Change search
ReferencesLink to record
Permanent link

Direct link
Simulation and Optimization of CNC controlled grinding processes: Analysis and simulation of automated robot finshing process
Halmstad University, School of Business, Engineering and Science, Mechanical Engineering and Industrial Design (MTEK). (Functional Surfaces)
Halmstad University, School of Business, Engineering and Science, Mechanical Engineering and Industrial Design (MTEK). (Functional Surfaces)
2016 (English)Independent thesis Advanced level (degree of Master (One Year)), 40 credits / 60 HE creditsStudent thesis
Abstract [en]

Products with complicated shapes require superior surface finish to perform the intended function. Despite significant developments in technology, finishing operations are still performed semi automatically/manually, relying on the skills of the machinist. The pressure to produce products at the best quality in the shortest lead time has made it highly inconvenient to depend on traditional methods. Thus, there is a rising need for automation which has become a resource to remain competitive in the manufacturing industry.

Diminishing return of trading quality over time in finishing operations signifies the importance of having a pre-determined trajectory (tool path) that produces an optimum surface in the least possible machining time. Tool path optimization for finishing process considering tool kinematics is of relatively low importance in the present scenario. The available automation in grinding processes encompass around the dynamics of machining.

In this paper we provide an overview of optimizing the tool path using evolutionary algorithms, considering the significance of process dynamics and kinematics. Process efficiency of the generated tool movements are studied based on the evaluation of relative importance of the finishing parameters. Surface quality is analysed using MATLAB and optimization is performed on account of peak to valley height.

Surface removal characteristics are analysed based on process variables that have the most likely impact on surface finish. The research results indicated that tool path is the most significant parameter determining the surface quality of a finishing operation. The inter-dependency of parameters were also studied using Taguchi design of experiments. Possible combinations of various tool paths and tool influencing parameters are presented to realize a surface that exhibits lowest errors.

Place, publisher, year, edition, pages
2016. , 138 p.
Forskning i Halmstad, ISSN 1400-5409
Keyword [en]
Numerical simulation, tool path, optimization, surface finish, automation, kinematics, Matlab, surface quality, Material removal characteristics, Robot polishing and processing, algorithms, scallop height, stepover, Data image correlation
National Category
Manufacturing, Surface and Joining Technology Production Engineering, Human Work Science and Ergonomics
URN: urn:nbn:se:hh:diva-30709OAI: diva2:918047
Subject / course
Mechanical Engineering
2016-02-25, P321, Kristian IV:s väg 3, 301 18, Halmstad, 10:30 (English)
European Horizon 2020 Project SYMPLEXITY
Available from: 2016-04-27 Created: 2016-04-08 Last updated: 2016-04-27Bibliographically approved

Open Access in DiVA

Main(10821 kB)70 downloads
File information
File name FULLTEXT01.pdfFile size 10821 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Mechanical Engineering and Industrial Design (MTEK)
Manufacturing, Surface and Joining TechnologyProduction Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar
Total: 70 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 192 hits
ReferencesLink to record
Permanent link

Direct link