Change search
ReferencesLink to record
Permanent link

Direct link
Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?
Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA.;Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA..
Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA.;Joint Genome Inst, US Dept Energy, Walnut Creek, CA USA..
Bundesforsch & Ausblldungszentrum VVald, Fed Res & Tr 3Thing Ctr Forests, Dept Forest Ecol, Vienna, Austria..
Univ Saskatchewan, Dept Soil Sci, Saskatoon, SK, Canada..
Show others and affiliations
2016 (English)In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, 214Article in journal (Refereed) PublishedText
Abstract [en]

Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

Place, publisher, year, edition, pages
2016. Vol. 7, 214
Keyword [en]
microbial diversity, functional gene, statistical modeling, microbial ecology, ecosystem processes, respiration, nitrification, denitrification
National Category
URN: urn:nbn:se:uu:diva-282313DOI: 10.3389/fmich.2016.00214ISI: 000370760300001OAI: diva2:916853
Available from: 2016-04-05 Created: 2016-04-05 Last updated: 2016-04-14Bibliographically approved

Open Access in DiVA

fulltext(525 kB)21 downloads
File information
File name FULLTEXT01.pdfFile size 525 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Lindström, Eva S.
By organisation
In the same journal
Frontiers in Microbiology

Search outside of DiVA

GoogleGoogle Scholar
Total: 21 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 66 hits
ReferencesLink to record
Permanent link

Direct link