Change search
CiteExportLink to record
Permanent link

Direct link
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigation of automated vehicle effects on driver’s behavior and traffic performance
Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Resource type
Abstract [en]

Advanced Driver Assistance Systems (ADAS) offer the possibility of helping drivers to fulfill their driving tasks. Automated vehicles are capable of communicating with surrounding vehicles (V2V) and infrastructure (V2I) in order to collect and provide essential information about driving environment. Studies have proved that automated vehicles have a potential to decrease traffic congestion on road networks by reducing the time headway, enhancing the traffic capacity and improving the safety margins in car following. Furthermore, vehicle movement and driver’s behavior of conventional vehicles will be affected by the presence of automated vehicles in traffic networks. Despite different encouraging factors, automated driving raises some concerns such as possible loss of situation awareness, overreliance on automation and degrading driving skills in absence of practice. Moreover, coping with complex scenarios, such as merging at ramps and overtaking, in terms of interaction between automated vehicles and conventional vehicles need more research. This thesis work aims to investigate the effects of automated vehicles on driver’s behavior and traffic performance. A broad literature review in the area of driving simulators and psychological studies was performed to examine the automated vehicle effects on driver’s behavior. Findings from the literature survey, which has been served as setup values in the simulation study of the current work, reveal that the conventional vehicles, which are driving close to the platoon of automated vehicles with short time headway, tend to reduce their time headway and spend more time under their critical time headway. Additionally, driving highly automated vehicles is tedious in a long run, reduce situation awareness and can intensify driver drowsiness, exclusively in light traffic. In order to investigate the influences of automated vehicles on traffic performance, a microscopic simulation case study consisting of different penetration rates of automated vehicles (0, 50 and 100 percentages) was conducted in VISSIM software. The scenario network is a three-lane autobahn segment of 2.9 kilometers including an off-ramp, on-ramp and a roundabout with some surrounding urban roads. Outputs of the microscopic simulation in this study reveal that the positive effects of automated vehicles on roads are especially highlighted when the network is crowded (e.g. peak hours). This can definitely count as a constructive point for the future of road networks with higher demands. In details, average density of autobahn segment remarkably decreased by 8.09% during p.m. peak hours in scenario with automated vehicles. Besides, Smoother traffic flow with less queue in the weaving segment was observed. Result of the scenario with 50% share of automated vehicles moreover shows a feasible interaction between conventional vehicles and automated vehicles. Meaningful outputs of this case study, based on the input data from literature review, demonstrate the capability of VISSIM software to simulate the presence of automated vehicles in great extent, not only as an automated vehicle scenario but also a share of them, in traffic network. The validity of the output values nonetheless needs future research work on urban and rural roads with different traffic conditions.

Place, publisher, year, edition, pages
2016. , 63 p.
Keyword [en]
Automated driving, Driver behavior, Traffic performance measure, VISSIM microscopic simulation, Traffic capacity
National Category
Communication Systems
URN: urn:nbn:se:liu:diva-126600ISRN: LiU-ITN-TEK-A-16/007--SEOAI: diva2:915767
Subject / course
Transportation Systems Engineering
Available from: 2016-03-31 Created: 2016-03-31 Last updated: 2016-03-31Bibliographically approved

Open Access in DiVA

fulltext(1296 kB)