CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt155",{id:"formSmash:upper:j_idt155",widgetVar:"widget_formSmash_upper_j_idt155",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt156_j_idt158",{id:"formSmash:upper:j_idt156:j_idt158",widgetVar:"widget_formSmash_upper_j_idt156_j_idt158",target:"formSmash:upper:j_idt156:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Group classification of linear Schrödinger equations by the algebraic methodPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)Licentiate thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Linköping University Electronic Press, 2016. , 22 p.
##### Series

Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1743
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-125136DOI: 10.3384/lic.diva-125136ISBN: 978-91-7685-810-3 (print)OAI: oai:DiVA.org:liu-125136DiVA: diva2:903188
##### Presentation

2016-02-24, KY26, Hus Key, Campus Valla, Linköping, 10:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt452",{id:"formSmash:j_idt452",widgetVar:"widget_formSmash_j_idt452",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt458",{id:"formSmash:j_idt458",widgetVar:"widget_formSmash_j_idt458",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt464",{id:"formSmash:j_idt464",widgetVar:"widget_formSmash_j_idt464",multiple:true});
Available from: 2016-02-15 Created: 2016-02-15 Last updated: 2016-02-15Bibliographically approved
##### List of papers

This thesis is devoted to the group classification of linear Schrödinger equations. The study of Lie symmetries of such equations was initiated more than 40 years ago using the classical Lie infinitesimal method for specific types of real-valued potentials. In first papers on this subject, most attention was paid to dynamical transformations, which necessarily change the time and space variables. This is why phase translations were missed. Later, the study of Lie symmetries was extended to nonlinear Schrödinger equations. At the same time, the group classification problem for the class of linear Schrödinger equations with complex potentials remains unsolved.

The aim of the present thesis is to carry out the group classification for the class of linear Schrödinger equations with complex potentials. These potentials are nowadays important in quantum mechanics, scattering theory, condensed matter physics, quantum field theory, optics, electromagnetics and so forth. We exhaustively solve the group classification problem for space dimensions one and two.

The thesis comprises two parts. The first part is a brief review of Lie symmetries and group classification of differential equations. Next, we outline the equivalence transformations in a class of differential equations, normalization properties of such class and the algebraic method for group classification of differential equations.

The second part consists of two research papers. In the first paper, the algebraic method is applied to solve the group classification problem for (1+1)-dimensional linear Schrödinger equations with complex potentials. With this technique, the problem of the group classification of the class under study is reduced to the classification of certain subalgebras of its equivalence algebra. As a result, we find that the inequivalent cases are exhausted by eight families of potentials and we give the corresponding maximal Lie invariance algebras.

In the second paper we carry out the preliminary symmetry analysis of the class of linear Schrödinger equations with complex potentials in the multi-dimensional case. Using the direct method, we find the equivalence groupoid and the equivalence group of this class. Due to the multi-dimensionality, the results of the computations are quite different from the ones presented in Paper I. We obtain the complete group classification of (1+2)-dimensional linear Schrödinger equations with complex potentials.

1. Algebraic method for group classification of (1+1)-dimensional linear Schrödinger equations$(function(){PrimeFaces.cw("OverlayPanel","overlay903184",{id:"formSmash:j_idt500:0:j_idt504",widgetVar:"overlay903184",target:"formSmash:j_idt500:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Group classification of multidimensional linear Schrödinger equations with algebraic method$(function(){PrimeFaces.cw("OverlayPanel","overlay903185",{id:"formSmash:j_idt500:1:j_idt504",widgetVar:"overlay903185",target:"formSmash:j_idt500:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1176",{id:"formSmash:j_idt1176",widgetVar:"widget_formSmash_j_idt1176",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1234",{id:"formSmash:lower:j_idt1234",widgetVar:"widget_formSmash_lower_j_idt1234",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1236_j_idt1238",{id:"formSmash:lower:j_idt1236:j_idt1238",widgetVar:"widget_formSmash_lower_j_idt1236_j_idt1238",target:"formSmash:lower:j_idt1236:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});