Change search
ReferencesLink to record
Permanent link

Direct link
A social learning analytics approach to cognitive apprenticeship
UAE University, United Arab Emirates.
UAE University, United Arab Emirates.ORCID iD: 0000-0002-7312-9089
UAE University, United Arab Emirates.
2015 (English)In: Smart Learning Environments, ISSN 2196-7091, Vol. 2, no 14Article in journal (Refereed) Published
Abstract [en]

The need for graduates who are immediately prepared for employment has been widely advocated over the last decade to narrow the notorious gap between industry and higher education. Current instructional methods in formal higher education claim to deliver career-ready graduates, yet industry managers argue their imminent workforce needs are not completely met. From the candidates view, formal academic path is well defined through standard curricula, but their career path and supporting professional competencies are not confidently asserted. In this paper, we adopt a data analytics approach combined with contemporary social computing techniques to measure, instil, and track the development of professional competences of learners in higher education. We propose to augment higher-education systems with a virtual learning environment made-up of three major successive layers: (1) career readiness, to assert general professional dispositions, (2) career prediction to identify and nurture confidence in a targeted domain of employment, and (3) a career development process to raise the skills that are relevant to the predicted profession. We analyze self-declared career readiness data as well as standard individual learner profiles which include career interests and domain-related qualifications. Using these combinations of data sources, we categorize learners into Communities of Practice (CoPs), within which learners thrive collaboratively to build further their career readiness and assert their professional confidence. Towards these perspectives, we use a judicious clustering algorithm that utilizes a fuzzy-logic objective function which addresses issues pertaining to overlapping domains of career interests. Our proposed Fuzzy Pairwise-constraints K-Means (FCKM) algorithm is validated empirically using a two-dimensional synthetic dataset. The experimental results show improved performance of our clustering approach compared to baseline methods.

Place, publisher, year, edition, pages
Springer Berlin/Heidelberg, 2015. Vol. 2, no 14
Keyword [en]
Learning analytics, Career readiness, Community of practice, Big data, Social networks, Computational science, Clustering, Fuzzy logic Smart Environments
National Category
Information Systems
Research subject
URN: urn:nbn:se:his:diva-11908DOI: 10.1186/s40561-015-0021-zOAI: diva2:902640
Available from: 2016-02-11 Created: 2016-02-11 Last updated: 2016-03-14Bibliographically approved

Open Access in DiVA

fulltext(2466 kB)112 downloads
File information
File name FULLTEXT01.pdfFile size 2466 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textSpringer

Search in DiVA

By author/editor
Atif, Yacine
Information Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 112 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 316 hits
ReferencesLink to record
Permanent link

Direct link