Change search
ReferencesLink to record
Permanent link

Direct link
Continuous-Time Semi-Markov Models in Health Economic Decision Making: An Illustrative Example in Heart Failure Disease Management
University of Groningen, Netherlands.
University of Groningen, Netherlands.
University of Groningen, Netherlands; National Institute Public Health and Environm, Netherlands.
Linköping University, Department of Social and Welfare Studies, Division of Health, Activity and Care. Linköping University, Faculty of Medicine and Health Sciences.
Show others and affiliations
2016 (English)In: Medical decision making, ISSN 0272-989X, E-ISSN 1552-681X, Vol. 36, no 1, 59-71 p.Article in journal (Refereed) PublishedText
Abstract [en]

Continuous-time state transition models may end up having large unwieldy structures when trying to represent all relevant stages of clinical disease processes by means of a standard Markov model. In such situations, a more parsimonious, and therefore easier-to-grasp, model of a patients disease progression can often be obtained by assuming that the future state transitions do not depend only on the present state (Markov assumption) but also on the past through time since entry in the present state. Despite that these so-called semi-Markov models are still relatively straightforward to specify and implement, they are not yet routinely applied in health economic evaluation to assess the cost-effectiveness of alternative interventions. To facilitate a better understanding of this type of model among applied health economic analysts, the first part of this article provides a detailed discussion of what the semi-Markov model entails and how such models can be specified in an intuitive way by adopting an approach called vertical modeling. In the second part of the article, we use this approach to construct a semi-Markov model for assessing the long-term cost-effectiveness of 3 disease management programs for heart failure. Compared with a standard Markov model with the same disease states, our proposed semi-Markov model fitted the observed data much better. When subsequently extrapolating beyond the clinical trial period, these relatively large differences in goodness-of-fit translated into almost a doubling in mean total cost and a 60-d decrease in mean survival time when using the Markov model instead of the semi-Markov model. For the disease process considered in our case study, the semi-Markov model thus provided a sensible balance between model parsimoniousness and computational complexity.

Place, publisher, year, edition, pages
SAGE PUBLICATIONS INC , 2016. Vol. 36, no 1, 59-71 p.
Keyword [en]
continuous-time semi-Markov model; vertical modeling; heart failure disease management
National Category
URN: urn:nbn:se:liu:diva-124110DOI: 10.1177/0272989X15593080ISI: 000366910300007PubMedID: 26174352OAI: diva2:896902

Funding Agencies|project TRIUMPH [01C-103]; ENGINE [01C-401]; Dutch Heart Foundation

Available from: 2016-01-22 Created: 2016-01-19 Last updated: 2016-03-14

Open Access in DiVA

fulltext(1995 kB)120 downloads
File information
File name FULLTEXT01.pdfFile size 1995 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Jaarsma, Tiny
By organisation
Division of Health, Activity and CareFaculty of Medicine and Health Sciences
In the same journal
Medical decision making

Search outside of DiVA

GoogleGoogle Scholar
Total: 120 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 330 hits
ReferencesLink to record
Permanent link

Direct link