Change search
ReferencesLink to record
Permanent link

Direct link
A First Study on Hidden Markov Models and one Application in Speech Recognition
Linköping University, Department of Mathematics, Mathematical Statistics . Linköping University, Faculty of Science & Engineering.
2016 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Speech is intuitive, fast and easy to generate, but it is hard to index and easy to forget. What is more, listening to speech is slow. Text is easier to store, process and consume, both for computers and for humans, but writing text is slow and requires some intention. In this thesis, we study speech recognition which allows converting speech into text, making it easier both to create and to use information. Our tool of study is Hidden Markov Models which is one of the most important machine learning models in speech and language processing.

The aim of this thesis is to do a rst study in Hidden Markov Models and understand their importance, particularly in speech recognition. We will go through three fundamental problems that come up naturally with Hidden Markov Models: to compute a likelihood of an observation sequence, to nd an optimal state sequence given an observation sequence and the model, and to adjust the model parameters. A solution to each problem will be given together with an example and the corresponding simulations using MatLab. The main importance lies in the last example, in which a rst approach to speech recognition will be done.

Place, publisher, year, edition, pages
2016. , 51 p.
, LiTH-MAT-INT-B, 2016:01
Keyword [en]
Markov chain, Hidden Markov model (HMM), Speech recognition, MatLab simulation.
National Category
URN: urn:nbn:se:liu:diva-123912ISRN: LiTH-MAT-INT-B--2016/01--SEOAI: diva2:893683
Subject / course
Available from: 2016-01-13 Created: 2016-01-13 Last updated: 2016-01-28Bibliographically approved

Open Access in DiVA

First Study on Hidden Markov Models and one Application in Speech Recognition(392 kB)218 downloads
File information
File name FULLTEXT03.pdfFile size 392 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Servitja Robert, Maria
By organisation
Mathematical Statistics Faculty of Science & Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 247 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 482 hits
ReferencesLink to record
Permanent link

Direct link