Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Measurements and estimation of the complex valued permeability of magnetic steel
Linnaeus University, Faculty of Technology, Department of Physics and Electrical Engineering. (Waves and Signals)
Linnaeus University, Faculty of Technology, Department of Physics and Electrical Engineering. (Waves and Signals)ORCID iD: 0000-0002-7018-6248
2015 (English)Report (Other academic)
Abstract [en]

This report is intended as a tutorial on electromagnetic modeling to measure and estimate the complex valued relative permeability of magnetic steel. The main application is with the estimation of the electromagnetic material parameters of the armour wires used with high-voltage AC power cables.

When the magnetic field intensity is sufficiently far from saturating the magnetic steel, the magnetic hysteresis phenomena can be approximated by using a linearization approach based on a complex valued (and frequency and amplitude dependent) relative permeability. In the report it is demonstrated how the complex valued permeability of magnetic steel can be efficiently estimated in the presence of a strong skin-effect. This is achieved by using a simple transformer coil built on the magnetic steel to be tested and by efficient numerical modeling based on waveguide theory and complex analysis. Numerical computations based on the Finite Element Method (FEM) and the commercial software COMSOL are employed to establish when edge effects can be ignored in the simplified analytical model.

Place, publisher, year, edition, pages
2015. , p. 29
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Physics, Waves and Signals
Identifiers
URN: urn:nbn:se:lnu:diva-48445OAI: oai:DiVA.org:lnu-48445DiVA: diva2:885132
Funder
Swedish Foundation for Strategic Research
Available from: 2015-12-18 Created: 2015-12-18 Last updated: 2017-06-09Bibliographically approved
In thesis
1. Estimation of electromagnetic material properties with application to high-voltage power cables
Open this publication in new window or tab >>Estimation of electromagnetic material properties with application to high-voltage power cables
2017 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Efficient design of high-voltage power cables is important to achieve an economical delivery of electric power from wind farms and power plants over the very long distances as well as the overseas electric power. The main focus of this thesis is the investigation of electromagnetic losses in components of high-voltage power cables. The objective of the ongoing research is to develop the theory and optimization techniques as tools to make material choices and geometry designs to minimize the high-frequency attenuation and dispersion for HVDC power cables and the power losses associated with HVAC cables. Physical limitations, dispersion relationships and the application of sum rules as well as convex optimization will be investigated to obtain adequate physical insight and a priori modeling information for these problems.

For HVAC power cables, the objectives are addressed by performing measurements and estimation of complex valued permeability of cable armour steel in Papers I and II. Efficient analytical solutions for the electromagnetic field generated by helical structures with applications for HVAC power cables have been obtained in Paper III.

For HVDC power cables, estimation of insulation characteristics from dielectric spectroscopy data using Herglotz functions, convex optimization and B-splines, has been investigated in Papers V and VI. The unique solution requirements in waveguide problems have been reviewed in Paper IV.

Place, publisher, year, edition, pages
Linnaeus University Press, 2017. p. 19
Series
Lnu Licentiate ; 2
Keyword
Material losses, power cables, cylindrical multipole expansion, Herglotz functions, convex optimization, sum rules
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Physics, Waves and Signals
Identifiers
urn:nbn:se:lnu:diva-64265 (URN)978-91-88357-77-9 (ISBN)
Presentation
2017-06-14, C1202, Newton, Hus C, Växjö, 10:15 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research , AM13-0011
Available from: 2017-06-09 Created: 2017-06-09 Last updated: 2017-09-01Bibliographically approved

Open Access in DiVA

fulltext(1504 kB)251 downloads
File information
File name FULLTEXT01.pdfFile size 1504 kBChecksum SHA-512
10ce76c86a77489226933f74072639076ca225954eb9c98e51ef605e6fc7cd6e3a434e48710aec8d6aa6a644e8a499b7c328061cc11325173e16bbd9f6392757
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Ivanenko, YevhenNordebo, Sven
By organisation
Department of Physics and Electrical Engineering
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 251 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 672 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf