Change search
ReferencesLink to record
Permanent link

Direct link
Sum decomposition of Mueller matrices from beetle cuticles
Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0001-9229-2028
Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-6371-0638
CNRS 91128 Palaiseau, France.
CNRS 91128 Palaiseau, FranceCNRS 91128 Palaiseau, France.
Show others and affiliations
2015 (English)Conference paper, Poster (Other academic)
Abstract [en]

Spectral Mueller matrices are very rich in information about physical properties of a sample. We have recently shown that polarizing properties like ellipticity and degree of polarization can be extracted from a Mueller matrix measured on a beetle cuticle (exoskeleton). Mueller matrices can also be used in regression analysis to model nanostructures in cuticles. Here we present the use of sum decomposition of Mueller matrices from these depolarizing biological reflectors to explore the fundamental character of these reflectors. The objective is to decompose a Mueller matrix into well- defined ideal non-depolarizing matrices corresponding to mirrors, circular polarizers, halfwave retarders etc.Generally it is possible to decompose a measured depolarizing Mueller matrix M into four (or fewer) non-depolarizing matrices according to M=λ1M1+λ2M2+λ3M3+λ4M4, where λ1, λ2, λ3 and λ4 are eigenvalues of the covariance matrix of M. Two strategies for decomposition will be discussed. A Cloude decomposition will provide the eigenvalues and also the Mi’s although the latter will contain severe noise in some spectral regions. However, a major advantage with the Cloude decomposition is that the number of nonzero eigenvalues is directly obtained, i.e. the number of contributing Mi matrices. In an alternative decomposition, the Mi’s are assumed and the eigenvalues are found by regression analysis based on M. In the case with two non-zero eigenvalues we define a model Mueller matrix MD=αRM1+βRM2 with αR+βR=1. With αR as adjustable parameter, the Frobenius norm ||M-MD|| is minimized for each wavelength in the spectral range of M. For more complex structures, the regression can be extended by adding more matrices up to a total of four. Advantages with a regression approach are its simplicity and stability compared to a Cloude decomposition.Mueller-matrix spectra of beetle cuticles are recorded with a dual rotating compensator ellipsometer in the spectral range 400 – 900 nm at angles of incidence in the range 20 - 75°. The application of decomposition on biological reflectors is demonstrated on M measured on the beetle Cetonia aurata, which represents a narrow-band chiral Bragg reflector with two non-zero eigenvalues. A decomposition in an ideal mirror and a circular polarizer is feasible. In another example, the broad-band and gold-colored beetle Chrysina argenteola, we show that more than two eigenvalues can be nonzero, especially at oblique incidence, and additional matrices are involved.

Place, publisher, year, edition, pages
National Category
Other Physics Topics
URN: urn:nbn:se:liu:diva-123363OAI: diva2:882064
9th Workshop Ellipsometry, Twente, 22-25 February 2015
Available from: 2015-12-13 Created: 2015-12-13 Last updated: 2016-01-13Bibliographically approved

Open Access in DiVA

fulltext(165 kB)27 downloads
File information
File name FULLTEXT01.pdfFile size 165 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Arwin, HansMagnusson, RogerJärrendahl, Kenneth
By organisation
Applied Optics Faculty of Science & Engineering
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar
Total: 27 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 85 hits
ReferencesLink to record
Permanent link

Direct link