Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental and Numerical Investigation of Ratcheting Effects in 316L Stainless Steel - The Two-Rod approach.
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
2014 (English)Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesisAlternative title
Experimentell och Numerisk Undersökning av Ratchetingeffekter för 316L Rostfritt Stål – Tvåstångsmetoden . (Swedish)
Abstract [en]

This Master’s Thesis was conducted during spring 2014. An experimental and numerical investigation was conducted on the austenitic 316L stainless steel. The main focus of the study was the investigation of ratcheting effects.

Experimentally, the main focus was the two-rod test, which had not been conducted previously. The two-rod test resembles a structure and a load case where ratcheting effects may be produced, although being less complicated than structures used in prior studies. Furthermore, the stress state in the structure is uniaxial. Other tests were also performed to characterize the material. Based on results from uniaxial tensile tests and fully reversed strain cycling of 316L, four material models were calibrated. The four material models were

 Bi-linear kinematic hardening model

 Multilinear kinematic hardening model (Mróz)

 Armstrong-Frederick non-linear kinematic hardening model

 Chaboche non-linear kinematic hardening model with three superimposed back-stress     tensors.

The two-rod test was then numerically simulated with different material models. The results from the FE simulations were then compared to the test results obtained from the two-rod tests. The goal, apart from investigating the ratcheting effects in 316L steel, was to evaluate the material models’ ability to reproduce the two-rod test results.

The results from the comparison suggest that the bi-linear and the multilinear material model agreed with the test results to a larger extent than the Armstrong-Frederick and Chaboche model. The two non-linear hardening material models predicted in most cases a constant ratcheting rate which did not agree with the test results. Even though the predictions of the two-rod tests with the bilinear and the multilinear models generally was better than predictions with the two non-linear hardening material models, the bilinear and the multilinear models predicted plastic shakedown in certain cases which was not observed in the tests. The employment of an isotropic part in the non-linear kinematic hardening material models might have improved the simulations’ agreement to experimental results.

The setup for the two-rod test proved robust and reliable. The results suggest that structural ratcheting effects dominate the two-rod test results. Furthermore, the comparison between simulations and the two-rod tests suggest that a more advanced material model does not necessarily yield in a better prediction.

Abstract [sv]

Det här examensarbetet utfördes under våren 2014. En experimentell och numerisk undersökning genomfördes på det austenitiska rostfria stålet 316L. Huvudområdet för studien var att undersöka fenomenet ratcheting (progressiv plastisk deformation).

Experimentellt var huvudfokus på det så kallade tvåstångstestet, vilket tidigare inte hade utförts. Tvåstångstestet utgör en struktur och ett lastfall vari ratcheting kan skapas, samtidigt som strukturen är mer renodlad än de som undersökts i tidigare studier för samma ändamål. Dessutom är spänningstillståndet enaxligt i strukturen. Utöver tvåstångsprovning gjordes även ytterligare provning för att karaktärisera materialet. Utgående från resultat från enaxligt dragprov och fullt reverserad töjningsstyrd cykling anpassades fyra materialmodeller efter materialet. Dessa fyra materialmodeller var

 Bi-linjär kinematiskt hårdnande modell

 Multilinjär kinematiskt hårdnande modell (Mróz)

 Armstrong-Frederick icke-linjärt kinematiskt hårdnande modell

 Chaboche icke-linjärt kinematiskt hårdnande modell med tre superponerade back stress-    tensorer.

En FEM-modell över tvåstångsprovet användes för att simulera de olika materialmodellernas respons. Resultaten från dessa jämfördes sedan med resultaten från tvåstångsprovningen. Målet, bortsett från att karaktärisera ratchetingeffekterna i 316L-stålet, var att utvärdera materialmodellernas förmåga att återskapa resultaten från tvåstångsprovningen.

Resultaten från jämförelsen mellan simuleringarna och tvåstångsprovningen pekar på att den bi-linjära och den multilinjära materialmodellen förmår återskapa provresultaten bättre än Armstrong-Frederick-modellen och Chaboche-modellen. De två sistnämnda materialmodellerna predikterade i de flesta fall konstant ratchetinghastighet, vilket inte överensstämde med provresultaten från tvåstångsprovningen. Även om predikteringen av tvåstångsprovningen med den bi-linjära och multilinjära materialmodellen överlag var bättre än för de icke-linjärt hårdnande materialmodellerna predikterade den bi-linjära och multilinjära materialmodellen i vissa fall plastisk shakedown, vilket inte sågs i provresultaten.

Införandet av isotropt hårdnande i de icke-linjärt kinematiskt hårdnande materialmodellerna kan ha förbättrat simuleringarnas överensstämmande med provresultaten då materialet visar på omfattande plastiskt hårdnande, både i monotont dragprov såväl som cykliskt hårdnande.

Metoden som utvecklades för tvåstångsprovningen visade sig robust och pålitlig. En slutsats som kan dras är att effekter från materialratcheting förmodligen är små i jämförelse med effekter från strukturratcheting i tvåstångsprovningen. Dessutom kan från jämförelsen mellan simuleringarna och tvåstångsprovningen sägas att en mer avancerad materialmodell inte nödvändigtvis resulterar i en prediktering som överensstämmer bättre med provningen.

Place, publisher, year, edition, pages
2014. , 76 p.
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-178802OAI: oai:DiVA.org:kth-178802DiVA: diva2:878326
External cooperation
Inspecta
Subject / course
Solid Mechanics
Supervisors
Examiners
Available from: 2015-12-08 Created: 2015-12-08 Last updated: 2015-12-08Bibliographically approved

Open Access in DiVA

fulltext(2263 kB)165 downloads
File information
File name FULLTEXT01.pdfFile size 2263 kBChecksum SHA-512
618d05be253f0194ce89e51049167e6e6319289a87a560eae064003708cc37deca923a3372cb999bcc8a65144b6e388bc62773f8315edd9ed9e152c88d8bb85e
Type fulltextMimetype application/pdf

By organisation
Solid Mechanics (Dept.)
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 165 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 102 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf