Change search
ReferencesLink to record
Permanent link

Direct link
On Tracing Flicker Sources and Classification of Voltage Disturbances
University of Borås, School of Engineering.
2007 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

Developments in measurement technology, communication and data storage have resulted in measurement systems that produce large amount of data. Together with the long existing need for characterizing the performance of the power system this has resulted in demand for automatic and efficient information-extraction methods. The objective of the research work presented in this thesis was therefore to develop new robust methods that extract additional information from voltage and current measurements in power systems. This work has contributed to two specific areas of interest. The first part of the work has been the development of a measurement method that gives information how voltage flicker propagates (with respect to a monitoring point) and how to trace a flicker source. As part of this work the quantity of flicker power has been defined and integrated in a perceptionally relevant measurement method. The method has been validated by theoretical analysis, by simulations, and by two field tests (at low-voltage and at 130-kV level) with results that matched the theory. The conclusion of this part of the work is that flicker power can be used for efficient tracing of a flicker source and to determine how flicker propagates. The second part of the work has been the development of a voltage disturbance classification system based on the statistical learning theory-based Support Vector Machine method. The classification system shows always high classification accuracy when training data and test data originate from the same source. High classification accuracy is also obtained when training data originate from one power network and test data from another. The classification system shows, however, lower performance when training data is synthetic and test data originate from real power networks. It was concluded that it is possible to develop a classification system based on the Support Vector Machine method with “global settings” that can be used at any location without the need to retrain. The conclusion is that the proposed classification system works well and shows sufficiently high classification accuracy when trained on data that originate from real disturbances. However, more research activities are needed in order to generate synthetic data that have statistical characteristics close enough to real disturbances to replace actual recordings as training data.

Place, publisher, year, edition, pages
Department of Signals and Systems, Chalmers University of Technology , 2007.
, Doktorsavhandlingar vid Chalmers Tekniska Högskola, 2617
Keyword [en]
power transmission and distribution, digital signal processing, power quality monitoring, light flicker, power system disturbance, support vector machines, Medicinteknik
Keyword [sv]
voltage dips
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Control Engineering
URN: urn:nbn:se:hb:diva-3416Local ID: 2320/2146ISBN: 978-91-7291-936-5OAI: diva2:876805
Available from: 2015-12-04 Created: 2015-12-04

Open Access in DiVA

fulltext(2347 kB)51 downloads
File information
File name FULLTEXT01.pdfFile size 2347 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Axelberg, Peter
By organisation
School of Engineering
Other Electrical Engineering, Electronic Engineering, Information EngineeringControl Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 51 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 44 hits
ReferencesLink to record
Permanent link

Direct link