References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Topology optimization considering stress, fatigue and load uncertaintiesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Linköping University Electronic Press, 2016. , 63 p.
##### Series

Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1730
##### National Category

Applied Mechanics
##### Identifiers

URN: urn:nbn:se:liu:diva-123008DOI: 10.3384/diss.diva-123008ISBN: 978-91-7685-883-7 (print)OAI: oai:DiVA.org:liu-123008DiVA: diva2:875698
##### Public defence

2016-01-15, C3, C-huset, Campus Valla, Linköping, 10:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2015-12-01 Created: 2015-12-01 Last updated: 2015-12-11Bibliographically approved
##### List of papers

This dissertation concerns structural topology optimization in conceptual design stages. The objective of the project has been to identify and solve problems that prevent structural topology optimization from being used in a broader sense in the avionic industry; therefore the main focus has been on stress and fatigue constraints and robustness with respect to load uncertainties.

The thesis consists of two parts. The first part gives an introduction to topology optimization, describes the new contributions developed within this project and motivates why these are important. The second part includes five papers.

The first paper deals with stress constraints and a clustered approach is presented where stress constraints are applied to stress clusters, instead of being defined for each point of the structure. Different approaches for how to create and update the clusters, such that sufficiently accurate representations of the local stresses are obtained at a reasonable computational cost, are developed and evaluated.

High-cycle fatigue constraints are developed in the second paper, where loads described by a variable-amplitude load spectrum and material data from fatigue tests are used to determine a limit stress, for which below fatigue failure is not expected. A clustered approach is then used to constrain the tensile principal stresses below this limit.

The third paper introduces load uncertainties and stiffness optimization considering the worst possible loading is then formulated as a semi-definite programming problem, which is solved very efficiently. The load is due to acceleration of point masses attached to the structure and the mass of the structure itself, and the uncertainty concerns the direction of the acceleration. The fourth paper introduces an extension to the formulated semi-definite programming problem such that both fixed and uncertain loads can be optimized for simultaneously.

Game theory is used in the fifth paper to formulate a general framework, allowing essentially any differentiable objective and constraint functions, for topology optimization under load uncertainty. Two players, one controlling the structure and one the loads, are in conflict such that a solution to the game, a Nash equilibrium, is a design optimized for the worst possible load.

1. Stress constrained topology optimization$(function(){PrimeFaces.cw("OverlayPanel","overlay601666",{id:"formSmash:j_idt423:0:j_idt427",widgetVar:"overlay601666",target:"formSmash:j_idt423:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Fatigue constrained topology optimization$(function(){PrimeFaces.cw("OverlayPanel","overlay601667",{id:"formSmash:j_idt423:1:j_idt427",widgetVar:"overlay601667",target:"formSmash:j_idt423:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Worst-case topology optimization of self-weight loaded structures using semi-definite programming$(function(){PrimeFaces.cw("OverlayPanel","overlay875660",{id:"formSmash:j_idt423:2:j_idt427",widgetVar:"overlay875660",target:"formSmash:j_idt423:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Large-scale robust topology optimization under load-uncertainty$(function(){PrimeFaces.cw("OverlayPanel","overlay875671",{id:"formSmash:j_idt423:3:j_idt427",widgetVar:"overlay875671",target:"formSmash:j_idt423:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Game theory approach to robust topology optimization with uncertain loading$(function(){PrimeFaces.cw("OverlayPanel","overlay875675",{id:"formSmash:j_idt423:4:j_idt427",widgetVar:"overlay875675",target:"formSmash:j_idt423:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1088",{id:"formSmash:lower:j_idt1088",widgetVar:"widget_formSmash_lower_j_idt1088",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1089_j_idt1091",{id:"formSmash:lower:j_idt1089:j_idt1091",widgetVar:"widget_formSmash_lower_j_idt1089_j_idt1091",target:"formSmash:lower:j_idt1089:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});