References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Numerics of Elastic and Acoustic Wave MotionPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Acta Universitatis Upsaliensis, 2016. , 32 p.
##### Series

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1322
##### Keyword [en]

finite differences, stability, high order accuracy, elastic wave equation, acoustic wave equation
##### National Category

Computational Mathematics
##### Research subject

Scientific Computing with specialization in Numerical Analysis
##### Identifiers

URN: urn:nbn:se:uu:diva-267135ISBN: 978-91-554-9418-6OAI: oai:DiVA.org:uu-267135DiVA: diva2:872294
##### Public defence

2016-01-18, 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 10:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt384",{id:"formSmash:j_idt384",widgetVar:"widget_formSmash_j_idt384",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt390",{id:"formSmash:j_idt390",widgetVar:"widget_formSmash_j_idt390",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt396",{id:"formSmash:j_idt396",widgetVar:"widget_formSmash_j_idt396",multiple:true});
Available from: 2015-12-17 Created: 2015-11-18 Last updated: 2016-01-13
##### List of papers

The elastic wave equation describes the propagation of elastic disturbances produced by seismic events in the Earth or vibrations in plates and beams. The acoustic wave equation governs the propagation of sound. The description of the wave fields resulting from an initial configuration or time dependent forces is a valuable tool when gaining insight into the effects of the layering of the Earth, the propagation of earthquakes or the behavior of underwater sound. In the most general case exact solutions to both the elastic wave equation and the acoustic wave equation are impossible to construct. Numerical methods that produce approximative solutions to the underlaying equations now become valuable tools. In this thesis we construct numerical solvers for the elastic and acoustic wave equations with focus on stability, high order of accuracy, boundary conditions and geometric flexibility. The numerical solvers are used to study wave boundary interactions and effects of curved geometries. We also compare the methods that we have constructed to other methods for the simulation of elastic and acoustic wave motion.

1. Stable and high order accurate difference methods for the elastic wave equation in discontinuous media$(function(){PrimeFaces.cw("OverlayPanel","overlay725553",{id:"formSmash:j_idt432:0:j_idt436",widgetVar:"overlay725553",target:"formSmash:j_idt432:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Interface waves in almost incompressible elastic materials$(function(){PrimeFaces.cw("OverlayPanel","overlay861487",{id:"formSmash:j_idt432:1:j_idt436",widgetVar:"overlay861487",target:"formSmash:j_idt432:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Formulae and software for particular solutions to the elastic wave equation in curved geometries$(function(){PrimeFaces.cw("OverlayPanel","overlay872264",{id:"formSmash:j_idt432:2:j_idt436",widgetVar:"overlay872264",target:"formSmash:j_idt432:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Elastic wave propagation in complex geometries: A qualitative comparison between two high order finite difference methods$(function(){PrimeFaces.cw("OverlayPanel","overlay872269",{id:"formSmash:j_idt432:3:j_idt436",widgetVar:"overlay872269",target:"formSmash:j_idt432:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Acoustic wave propagation in complicated geometries and heterogeneous media$(function(){PrimeFaces.cw("OverlayPanel","overlay692741",{id:"formSmash:j_idt432:4:j_idt436",widgetVar:"overlay692741",target:"formSmash:j_idt432:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. High order finite difference methods for the wave equation with non-conforming grid interfaces$(function(){PrimeFaces.cw("OverlayPanel","overlay861408",{id:"formSmash:j_idt432:5:j_idt436",widgetVar:"overlay861408",target:"formSmash:j_idt432:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1123",{id:"formSmash:lower:j_idt1123",widgetVar:"widget_formSmash_lower_j_idt1123",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1124_j_idt1126",{id:"formSmash:lower:j_idt1124:j_idt1126",widgetVar:"widget_formSmash_lower_j_idt1124_j_idt1126",target:"formSmash:lower:j_idt1124:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});