Change search
ReferencesLink to record
Permanent link

Direct link
IRONARC; a New Method for Energy Efficient Production of Iron Using Plasma Generators
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The most widely used process to reduce iron ore and to produce pig iron is the blast furnace. The blast furnace is a large source of CO2 emissions since it is a coal based process and due to that the main energy source and reducing agent is coke, it is difficult to reduce these further. IRONARC is a new method used to produce pig iron by reducing iron ore and all the energy used for heating comes from electricity, which gives the opportunity to use renewable resources. The process uses plasma generators that inject gas at high temperature and velocity into a slag that consists of iron oxides. The iron oxides are reduced in two steps that appear by using gas as reduction agent in the first step and carbon in the second step.   It exists in a smaller pilot plant scale and this project was the first step in the future upscaling of the IRONARC process.

Computational Fluid Dynamics (CFD) modelling was used and the goal was to determine the penetration depth of the IRONARC pilot plant process by numerical simulation in the software ANSYS FLUENT. The penetration depth is of importance because to be able to scale up the process it is important to know the flow pattern and the structure of the flow in the process, which is dependent on how far into the slag the gas reaches.

Two numerical models were made. First an air-water model that described the initial penetration of air injected into water. The air-water simulation was made with parameters and data from an experiment found in literature. This was done to build an accurate CFD model for the penetration depth in FLUENT and validate the model with the results of the penetration depth from the experiment. The air-water simulation gave good and promising results and yielded the same result regarding the penetration depth as the experiment.  The model for the penetration depth was then used with the IRONARC geometry and parameters. After simulation the penetration depth of the IRONARC process was determined. For the future, the penetration depth of the pilot plant needs to be measured and compared with the simulated result for the penetration depth. 

Place, publisher, year, edition, pages
2015. , 52 p.
Keyword [en]
CFD, IRONARC, penetration depth, pig iron production
National Category
Metallurgy and Metallic Materials
URN: urn:nbn:se:kth:diva-173357OAI: diva2:852800
Subject / course
Applied Process Metallurgy
Educational program
Master of Science - Materials Science and Engineering
Available from: 2015-09-15 Created: 2015-09-10 Last updated: 2016-04-19Bibliographically approved

Open Access in DiVA

fulltext(2311 kB)76 downloads
File information
File name FULLTEXT01.pdfFile size 2311 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Bölke, Kristofer
By organisation
Materials Science and Engineering
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar
Total: 76 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 360 hits
ReferencesLink to record
Permanent link

Direct link