Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Performance Evaluation of LTE/LTE-A DRX: A Markovian Approach
SAAB Training and Simulation, Husqvarna, Sweden.ORCID iD: 0000-0002-3933-285X
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).ORCID iD: 0000-0003-4894-4134
2015 (English)In: IEEE Internet of Things Journal, ISSN 2327-4662, Vol. 3, no 3, 386-397 p., 7303883Article in journal (Refereed) Published
Abstract [en]

LTE/LTE-A are emerging communication technologies on the way towards 5G telecommunication systems. Ubiquitous adoption of connectivity in between different kinds of sensors, wearable devices and other low-power equipment raises an importance of the energy-efficient wireless communications. In LTE/LTE-A the Discontinuous Reception Mechanism (DRX) aims at power saving of User Equipment (UE) devices. In the paper we present an analysis of DRX, which is novel in two dimensions. First, our analytical approach is different to existing ones due to the use of Markov chain instead of a semi-Markov ones. Secondly, along with the generic traffic models we also analyze the efficiency of DRX for military training application systems, what has not been done before. We suggest few practical recommendations regarding the DRX parameters tuning also. © 2015 IEEE.

Place, publisher, year, edition, pages
Piscataway, NJ: IEEE Press, 2015. Vol. 3, no 3, 386-397 p., 7303883
Keyword [en]
LTE/LTE-A, DRX, power saving, energy efficiency, wake-up delay, machine-to-machine communication, military training, IoT
National Category
Communication Systems
Identifiers
URN: urn:nbn:se:hh:diva-29336DOI: 10.1109/JIOT.2015.2493370ISI: 000377481700013Scopus ID: 2-s2.0-84969821510OAI: oai:DiVA.org:hh-29336DiVA: diva2:850102
Available from: 2015-08-31 Created: 2015-08-31 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Resource handling for military training networks
Open this publication in new window or tab >>Resource handling for military training networks
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Connected devices are increasing steadily and the number of devices will in soon future be so massive that they are impacting the next generation of wireless standards and are already being considered in them. Machine-to-Machine (M2M) communications and Internet of Things (IoT) sub fields of wireless communications have developed lately with their own research fields and forums. 

Military training systems are using radio networks of connected devices to provide realistic combat training with new trends of multimedia streaming and lower traffic latency requirements. To facilitate further development of the networks a research goal is formulated to target the improvement of the network in the desired direction. The research goal is to answer how to provide energy efficient wireless communications within the framework of the military training application, meeting requirements of delay, number of network nodes and power efficiency for mobile devices and is broken down to three separate research questions that are each targeted separately as below.

We have developed an admission control with real-time analysis for a single-frequency base station for mobile nodes with real-time traffic. This scope has been extended to an admission control for a multichannel base station where we also proposed a method on how to maximize the number of mobile nodes, with different traffic requirements including multimedia traffic, in the network. Finally a probabilistic model has been proposed for the Discontinuous Reception (DRX) power saving mechanism for LTE/LTE-A in the 4:th Generation (4G) telecommunications standard. It was also shown how to meet traffic delays while maximizing the power saving factor in the mobile nodes.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2015. 15 p.
Series
Halmstad University Dissertations, 16
National Category
Communication Systems
Identifiers
urn:nbn:se:hh:diva-29337 (URN)978-91-87045-34-9 (ISBN)978-91-87045-35-6 (ISBN)
Presentation
2015-09-21, Haldasalen, House Visionen, Kristian IV:s väg 3, Halmstad, 10:15 (English)
Opponent
Supervisors
Note

Examiner: Professor Walid Taha, Halmstad University

Available from: 2015-09-15 Created: 2015-08-31 Last updated: 2016-06-09Bibliographically approved
2. Managing Radio and Energy Resources in LTE-Based Military Training Networks
Open this publication in new window or tab >>Managing Radio and Energy Resources in LTE-Based Military Training Networks
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The number of wireless connected devices are growing exponentially and the importance of this research area is growing as well to meet the known and looming challenges and expectations. The 5:th Generation telecommunications standard is partly embodied by the Machine-to-Machine (M2M) and Internet of Things (IoT) technologies and standards to handle a big part of these devices and connections. An example within the IoT paradigm is military training systems where each system can consist of thousands of battery operated mobile devices and their shifting requirements shall be fullled in an energy-aware manner to increase battery operating times.

Military training radio networks enables realistic combat training. The services and features provided in commercial telecommunications networks are desirable in these often proprietary and task specic networks, increasing capabilities and functionalities. To facilitate the current and future R&D of LTE based networks for adoption in military training networks and services this doctoral thesis intends to provide the starting ground for the energy-aware LTE based wireless communications. The thesis first presents general solutions on how to meet traffic deadlines in wireless networks for large number of nodes, and then continues with solutions for energy-aware LTE-based communications for the User Equipments (UEs).

The work builds on the problem formulation how to provide energy-aware resource handling for LTE-based military training networks from where three research questions are derived. From the research questions we derive different hypotheses and then test these within the investigated area to answer the research questions.

The contributions of this work are within areas of resource handling and power saving for mobile devices. In the first area an admission control using deterministic analysis is proposed fullling traffic requirements for military training mobile nodes. This admission control is enhanced for multiple-channel base stations, and evaluated using mobile nodes with different heterogeneous traffic requirements. In the second part energy-awareness is in focus for LTE/LTE-A based networks. The main power saving method for LTE/LTE-A UEs, Discontinuous Reception (DRX) mechanism, is evaluated and models for DRX in Idle and Connected state are proposed including metrics for wake-up delay and power saving. Additionally a mean queuing delay analysis is proposed for a variant of the Connected state DRX. Using these models and metrics, practical design guidelines for tuning of DRX parameters are proposed, including optimization of DRX parameters for either minimizing delay or maximizing power saving.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2017. xi, 16 p.
Series
Halmstad University Dissertations, 38
Keyword
4G, 5G, LTE, DRX
National Category
Communication Systems
Identifiers
urn:nbn:se:hh:diva-35807 (URN)978-91-87045-79-0 (ISBN)978-91-87045-78-3 (ISBN)
Public defence
2017-12-01, Halda Hall, Building Visionen, Kristian IV:s väg 3, Halmstad, 10:15 (English)
Opponent
Supervisors
Available from: 2017-12-12 Created: 2017-12-11 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

fulltext(2044 kB)52 downloads
File information
File name FULLTEXT02.pdfFile size 2044 kBChecksum SHA-512
2164322541f7951e425cab1f720eb4347b21f1195d3d0786b87221aff564f9db495ae79be519c6d255cbd65a059a393a25d49d9aa4f924c2987cc0c16de219bc
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ramazanali, HawarVinel, Alexey
By organisation
Centre for Research on Embedded Systems (CERES)
In the same journal
IEEE Internet of Things Journal
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 57 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 437 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf