References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Restricted cycle factors and arc-decompositions of digraphsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2015 (English)In: Discrete Applied Mathematics, ISSN 0166-218X, Vol. 193, 80-93 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Elsevier , 2015. Vol. 193, 80-93 p.
##### Keyword [en]

Cycle factor; 2-factor; Mixed problem; NP-complete; Complexity; Cycle factors with no short cycles; Latin square; Avoidable arrays; Monochromatic matchings
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-120854DOI: 10.1016/j.dam.2015.04.020ISI: 000359174700007OAI: oai:DiVA.org:liu-120854DiVA: diva2:849475
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
##### Note

We study the complexity of finding 2-factors with various restrictions as well as edge-decompositions in (the underlying graphs of) digraphs. In particular we show that it is N P-complete to decide whether the underlying undirected graph of a digraph D has a 2-factor with cycles C-1, C-2, ..., C-k such that at least one of the cycles C-i is a directed cycle in D (while the others may violate the orientation back in D). This solves an open problem from J. Bang-Jensen et al., Vertex-disjoint directed and undirected cycles in general digraphs, JCT B 106 (2014), 1-14. Our other main result is that it is also N P-complete to decide whether a 2-edge-colored bipartite graph has two edge-disjoint perfect matchings such that one of these is monochromatic (while the other does not have to be). We also study the complexity of a number of related problems. In particular we prove that for every even k greater than= 2, the problem of deciding whether a bipartite digraph of girth k has a k-cycle-free cycle factor is N P-complete. Some of our reductions are based on connections to Latin squares and so-called avoidable arrays.

Funding Agencies|Danish Research Council [1323-00178B]; Institute Mittag-Leffler

Available from: 2015-08-28 Created: 2015-08-28 Last updated: 2015-09-09References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1088",{id:"formSmash:lower:j_idt1088",widgetVar:"widget_formSmash_lower_j_idt1088",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1089_j_idt1091",{id:"formSmash:lower:j_idt1089:j_idt1091",widgetVar:"widget_formSmash_lower_j_idt1089_j_idt1091",target:"formSmash:lower:j_idt1089:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});