Change search
CiteExportLink to record
Permanent link

Direct link
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Neural Mechanisms Underlying Self-Localization in Rodents
University of Skövde, School of Bioscience.
2015 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

The ability to self-localize and navigate in both stable and changing environments is crucial for the survival of many species. Research conducted on the non-human mammalian hippocampus and surrounding brain structures has uncovered several classes of spatial related cells. These cells provide the rest of the brain with knowledge of the animal’s location and direction—knowledge that is subsequently used in spatial navigation. This thesis provides an overview of three types of cells underlying this ability in rodents. First, place cells located in the hippocampus encode the animal’s specific location in the environment. Second, head direction cells found throughout the Papez circuit convey the angular direction of the animal’s head. Last, grid cells in the medial entorhinal cortex generate a regular triangular grid spanning the entire explored setting. The focus of this review lies on the most salient features of these types of cells. It is also considered how the cells respond to manipulations of external and internal information, as well as how different lesions affect their activity. 

Place, publisher, year, edition, pages
2015. , 54 p.
Keyword [en]
place cells, head direction cells, grid cells, self-location, spatial processing
National Category
URN: urn:nbn:se:his:diva-11339OAI: diva2:846227
Subject / course
Cognitive Neuroscience
Educational program
Consciousness Studies - Philosophy and Neuropsychology
Available from: 2015-10-13 Created: 2015-08-14 Last updated: 2015-10-13Bibliographically approved

Open Access in DiVA

fulltext(2940 kB)