Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Near-Infrared Emitting and Pro-Angiogenic Electrospun Conjugated Polymer Scaffold for Optical Biomaterial Tracking
Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Biotechnology. Linköping University, Faculty of Science & Engineering.
Chalmers, Sweden.
Show others and affiliations
2015 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 25, no 27, 4274-4281 p.Article in journal (Refereed) Published
Abstract [en]

Noninvasive tracking of biomaterials is vital for determining the fate and degradation of an implant in vivo, and to show its role in tissue regeneration. Current biomaterials have no inherent capacity to enable tracing but require labeling with, for example, fluorescent dyes, or nanoparticles. Here a novel biocompatible fully conjugated electrospun scaffold is described, based on a semiconducting luminescent polymer that can be visualized in situ after implantation using fluorescence imaging. The polymer, poly [2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt -thiophene-2,5-diyl] (TQ1), is electrospun to form a fibrous mat. The fibers display fluorescence emission in the near-infrared region with lifetimes in the sub-nanosecond range, optimal for in situ imaging. The material shows no cytotoxic behaviors for embryonic chicken cardiomyocytes and mouse myoblasts, and cells migrate onto the TQ1 fibers even in the presence of a collagen substrate. Subcutaneous implantations of the material in rats show incorporation of the TQ1 fibers within the tissue, with limited inflammation and a preponderance of small capillaries around the fibers. The fluorescent properties of the TQ1 fibers are fully retained for up to 90 d following implantation and they can be clearly visualized in tissue using fluorescence and lifetime imaging, thus making it both a pro-angiogenic and traceable biomaterial.

Place, publisher, year, edition, pages
Wiley: 12 months , 2015. Vol. 25, no 27, 4274-4281 p.
Keyword [en]
biomaterials, conjugated polymers, near-infrared, angiogenesis, electrospinning
National Category
Biomaterials Science Polymer Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-120449DOI: 10.1002/adfm.201500351ISI: 000357996600011OAI: oai:DiVA.org:liu-120449DiVA: diva2:845605
Note

Funding Agencies|Linkoping University; Swedish Foundation for Strategic Research; Swedish Research Council

Available from: 2015-08-12 Created: 2015-08-11 Last updated: 2017-12-04
In thesis
1. Multifunctional Biomimetic Scaffolds Tailored for Cardiac Regeneration
Open this publication in new window or tab >>Multifunctional Biomimetic Scaffolds Tailored for Cardiac Regeneration
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nature has had millions of years to perfect the structural components of the human body, but has also produced the dysfunctions that result in the cancers and diseases, which ruin that perfection. Congenital heart defects, and myocardial infarction lead to scarring that remodels heart muscle, decreasing the contractility of the heart, with profound consequences for the host. Regenerative medicine is the study of strategies to return diseased body parts to their evolutionarily optimum structure.

Nature has had millions of years to perfect the structural components of the human body, but has also produced the dysfunctions that result in the cancers and diseases, which ruin that perfection. Congenital heart defects, and myocardial infarction lead to scarring that remodels heart muscle, decreasing the contractility of the heart, with profound consequences for the host. Regenerative medicine is the study of strategies to return diseased body parts to their evolutionarily optimum structure. Cells alone cannot develop into functional tissue, as they require mechanical support and chemical signals from the extracellular matrix in order to play the correct role in the body. In order to imitate the process of tissue formation optimized by nature, scaffolds are developed as the architectural support for tissue regeneration. To mimic the elasticity and strength seen in the heart muscle is one of the major scientific conundrums of our time. The development of new multifunctional materials for scaffolds is an accepted solution for repairing failing heart muscle. In this thesis I accept the notion that endogenous cardiac cells can play a major role in addressing this problem, if we can attract them to the site of defect or injury and make them proliferate. I then proceed to show how improving on a commonly used synthetic polymer was used to develop two new biomaterials.

Polycaprolactone (PCL) fibers and sheets were studied for their ability to adsorb proteins based on their surface energies. We found that although the wettability of the PCL might be similar to positive controls for cell attachment, the large differences in surface energies may account for the increased serum protein adsorption and limit cell adhesion. The effect of fiber morphology was then investigated with respect to proliferation of mesenchymal stem cells and cardiac progenitor cells. PCL was also mechanically enhanced with thiophene conjugated single walled carbon nanotubes (T-CNT); where small concentrations of the T-CNT allowed for a 2.5 fold increase in the percentage of elongation, while retaining the proliferation profile of the cardiac progenitor cells. Although PCL is a well-known implant material, the ability to attract and adhere cardiac cells was limited. Therefore we sought to develop new biomaterials with fiber morphologies similar to the muscle fiber of the heart, but with surface energies similar to positive controls for cell attachment. Poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1) was then explored as a ribbon fiber and compared to collagen with embryonic cardiac cells, in vitro, and then implanted into rats for in vivo long term evaluations. The cardiac cells had a preferential adhesion to the TQ1 fibers, and in vivo, the fibers attracted more blood vessels and regrew functional tissue compared to the collagen controls. TQ1 fibers had the added ability to emit light in the near infrared region, which would allow for consistent tracking of the material. Although this material offered the morphological preference for the cardiac cells, it does not degrade and nor did it offer electrical conductivity. The heart muscle is an electrically active muscle. The dead tissue that is formed in the ischemic area loses its ability to  transfer the electrical signals. Hence, I have then developed collagen fibrous materials with silver nanowires to help store and inject charges that would be generated during the contraction of the heart muscle. The silver nanowires served to help carry charges whilst providing resistance to bacterial growth on the material. The collagen/silver nanowires composites were mechanically apt for the culture of embryonic cardiac cells.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. 80 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1686
National Category
Physical Sciences Clinical Medicine
Identifiers
urn:nbn:se:liu:diva-120773 (URN)10.3384/diss.diva-120773 (DOI)978-91-7519-021-1 (ISBN)
Public defence
2015-08-28, Planck, Fysikhuset, Campus Valla, Linköping, 09:15 (English)
Opponent
Supervisors
Available from: 2015-08-24 Created: 2015-08-24 Last updated: 2017-01-11Bibliographically approved

Open Access in DiVA

fulltext(882 kB)63 downloads
File information
File name FULLTEXT01.pdfFile size 882 kBChecksum SHA-512
29c7c5c74bf5bf605dcc8fe2c3e364ffff15689f53ebd0287a6892f842dd2b7c4256047b491171431882983019d4c1d443a92d8857fcfbfef89b514448d85ae7
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Wickham, AbeniSjölander, DanielBergström, GunnarRajendran, VijayalakshmiHildesjö, CamillaSkoglund, KarinNilsson, PeterAili, Daniel
By organisation
Molecular PhysicsFaculty of Science & EngineeringDepartment of Physics, Chemistry and BiologyBiotechnologyDivision of Cell BiologyFaculty of Health SciencesDivision of Clinical SciencesFaculty of Medicine and Health SciencesDivision of Neuro and Inflammation ScienceChemistry
In the same journal
Advanced Functional Materials
Biomaterials SciencePolymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 63 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1749 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf