Change search
ReferencesLink to record
Permanent link

Direct link
Oxidation of pharmaceuticals by chlorine dioxide in wastewater effluent.
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The presence of pharmaceuticals in the environment has raised an emerging interest due to the fact that they pose negative environmental impact and health hazards related to long-term toxicity effects. As conventional treatments are not able to totally remove these substances it is necessary to seek for alternative advanced technologies such as oxidation with chlorine dioxide (ClO2). The objective of this master thesis is thus to find the most optimal dose – reaction time of ClO2 for the oxidation and maximum removal of selected environmentally relevant pharmaceuticals. Factorial design and subsequent optimization with MODDE was selected as the best approach to find the optimal dose – time. Batch oxidation tests were conducted on 100mL aliquots treated with ClO2 using wastewater effluent from Henriksdal WWTP. Thereafter solid phase extraction and final determination of pharmaceuticals was carried out on a high performance liquid chromatography- triple quadrupole mass spectrometry (HPLC-MS/MS). Results showed that applying a dose of 5 mg ClO2/L and a reaction time of 10 minutes, it is possible to remove more than a half of the 17 analyzed substances. Besides most of the pharmaceuticals with high and moderate environmental risk, would pose a low risk for the environment after treatment with the optimal ClO2 dose – reaction time. Despite the fact that ClO2 could successfully degrade most environmentally relevant pharmaceuticals, deeper research concerning the formation of toxic by-products after oxidative treatment needs to be done before upscaling this technology to pilot or full scale as a suitable end of pipe technology for pharmaceuticals removal.

Place, publisher, year, edition, pages
, TRITA-LWR Degree Project, ISSN 1651-064X ; 2015:16
Keyword [en]
pharmaceuticals; chlorine dioxide; wastewater effluent; environmental risk; factorial design; MODDE
National Category
Civil Engineering
URN: urn:nbn:se:kth:diva-171862OAI: diva2:844736
Educational program
Degree of Master - Environmental Engineering and Sustainable Infrastructure
Available from: 2015-09-21 Created: 2015-08-07 Last updated: 2015-09-21Bibliographically approved

Open Access in DiVA

fulltext(3894 kB)44 downloads
File information
File name FULLTEXT01.pdfFile size 3894 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Land and Water Resources Engineering
Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 44 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 114 hits
ReferencesLink to record
Permanent link

Direct link