Change search
ReferencesLink to record
Permanent link

Direct link
Risk management of groundwater drawdown in settlement sensitive areas.
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630).
2013 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

A new method for estimation of risks at settlement calculations is presented. By quantifying uncertainties of settlement calculations, it is possible to make risk analysis and to compare the costs of risk reducing efforts with the benefit these efforts would lead to. The settlement estimations are done by combining uncertainties about soil data, groundwater drawdown and settlement calculations. This master degree thesis describes how the groundwater drawdown is estimated using a numerical model. The model reflects the groundwater decrease around a drainage well with respect to estimated groundwater recharge, dependent on the geology and precipitation. There are four parameters in the model which are connected to soil properties and precipitation; hydraulic conductivity for clay, hydraulic conductivity for till, hydraulic conductivity for sand and mean annual net precipitation. Drawdown is estimated in a deterministic and a probabilistic model, where the probabilistic model uses stochastic parameter values in a Monte Carlo simulation.

The risks concerning settlements are found when the groundwater model is integrated with a soil model and a settlement model. When integrated, the new model estimates risks related to all three separate models.

Results of groundwater drawdown and ground settlement estimations are spatially presented in a sensitivity and risk analysis. By finding and comparing the most influencing parameters of the settlement, project decision makers will have an easier task deciding on what further measures should be focused on.

Place, publisher, year, edition, pages
, TRITA-LWR Degree Project, ISSN 1651-064X ; 2013:18
Keyword [en]
Groundwater model; Settlement; Crystal Ball with Monte Carlo simulation; Risk analysis; Deterministic; Probabilistic
National Category
Civil Engineering
URN: urn:nbn:se:kth:diva-171829OAI: diva2:844659
Educational program
Degree of Master - Water System Technology
Available from: 2015-09-21 Created: 2015-08-07 Last updated: 2015-09-21Bibliographically approved

Open Access in DiVA

fulltext(2461 kB)15 downloads
File information
File name FULLTEXT01.pdfFile size 2461 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Land and Water Resources Engineering (moved 20130630)
Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 15 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 41 hits
ReferencesLink to record
Permanent link

Direct link