Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Automated Glioma Segmentation in MRI using Deep Convolutional Networks
KTH, School of Computer Science and Communication (CSC).
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Automatisk Segmentering av Gliom i MRI med Deep Convolutional Networks (Swedish)
Abstract [en]

Manual segmentation of brain tumours is a time consuming process, results often show high variability, and there is a call for automation in clinical practice. In this thesis the use of deep convolutional networks for automatic glioma segmentation in MRI is investigated. The implemented networks are evaluated on data used in the brain tumor segmentation challenge (BraTS). It is found that 3D convolutional networks generally outperform 2D convolutional networks, and that the best networks can produce segmentations that closely resemble human segmentations. Convolutional networks are also evaluated as feature extractors with linear SVM classifiers on top, and although the sensitivity is improved considerably, the segmentations are heavily oversegmented. The importance of the amount of data available is investigated as well by comparing results from networks trained on both 2013 and the greatly extended 2014 data set, but it is found that the method of producing ground-truth was also a contributing factor. The networks does not beat the previous high-scores on the BraTS data, but several simple improvement areas are identified to take the networks further.

Abstract [sv]

Manuell segmentering av hjärntumörer är en tidskrävande process, segmenteringarna är ofta varierade mellan experter, och automatisk segmentering skulle vara användbart för kliniskt bruk. Den här rapporten undersöker användningen av deep convolutional networks (ConvNets) för automatisk segmentering av gliom i MR-bilder. De implementerade nätverken utvärderas med hjälp av data från brain tumor segmentation challenge (BraTS). Studien finner att 3D-nätverk har generellt bättre resultat än 2D-nätverk, och att de bästa nätverken har förmågan att ge segmenteringar som liknar mänskliga segmenteringar. ConvNets utvärderas också som feature extractors, med linjära SVM som klassificerare. Den här metoden ger segmenteringar med hög känslighet, men är också till hög grad översegmenterade. Vikten av att ha mer träningsdata undersöks också genom att träna på två olika stora dataset, men metoden för att få fram de riktiga segmenteringarna har troligen också stor påverkan på resultatet. Nätverken slår inte de tidigare rekorden på BraTS, men flera viktiga men enkla förbättringsområden är identifierade som potentiellt skulle förbättra resultaten.

Place, publisher, year, edition, pages
2015.
Keyword [en]
deep, convolutional, networks, neural networks, image segmentation, brain tumour, glioma, MRI, BRATS
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-171046OAI: oai:DiVA.org:kth-171046DiVA: diva2:841518
External cooperation
Elekta
Subject / course
Computer Science
Educational program
Master of Science in Engineering - Computer Science and Technology
Supervisors
Examiners
Available from: 2015-07-19 Created: 2015-07-13 Last updated: 2015-07-19Bibliographically approved

Open Access in DiVA

fulltext(1007 kB)