Change search
ReferencesLink to record
Permanent link

Direct link
Effect of N-2 and Ar gas on DC arc plasma generation and film composition from Ti-Al compound cathodes
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Institute High Current Elect SB RAS, Russia.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
2015 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 117, no 21, 213301- p.Article in journal (Refereed) Published
Abstract [en]

DC arc plasma from Ti, Al, and Ti(1-x)A(l)x (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes has been characterized with respect to plasma chemistry (charged particles) and charge-stateresolved ion energy for Ar and N-2 pressures in the range 10(-6) to 3 x 10(-2) Torr. Scanning electron microscopy was used for exploring the correlation between the cathode and film composition, which in turn was correlated with the plasma properties. In an Ar atmosphere, the plasma ion composition showed a reduction of Al of approximately 5 at.% compared to the cathode composition, while deposited films were in accordance with the cathode stoichiometry. Introducing N-2 above similar to 5 x 10(-3) Torr, lead to a reduced Al content in the plasma as well as in the film, and hence a 1:1 correlation between the cathode and film composition cannot be expected in a reactive environment. This may be explained by an influence of the reactive gas on the arc mode and type of erosion of Ti and Al rich contaminations, as well as on the plasma transport. Throughout the investigated pressure range, a higher deposition rate was obtained from cathodes with higher Al content. The origin of generated gas ions was investigated through the velocity rule, stating that the most likely ion velocities of all cathode elements from a compound cathode are equal. The results suggest that the major part of the gas ions in Ar is generated from electron impact ionization, while gas ions in a N-2 atmosphere primarily originate from a nitrogen contaminated layer on the cathode surface. The presented results provide a contribution to the understanding processes of plasma generation from compound cathodes. It also allows for a more reasonable approach to the selection of composite cathode and experimental conditions for thin film depositions. (C) 2015 AIP Publishing LLC.

Place, publisher, year, edition, pages
American Institute of Physics (AIP) , 2015. Vol. 117, no 21, 213301- p.
National Category
Physical Sciences
URN: urn:nbn:se:liu:diva-120050DOI: 10.1063/1.4921952ISI: 000355925600007OAI: diva2:839993

Funding Agencies|European Research Council under the European Communitys Seventh Framework Programme (FP7)/ERC [258509]; Swedish Research Council (VR) [642-2013-8020]; KAW; Russian Scientific Foundation [14-19-00083]

Available from: 2015-07-06 Created: 2015-07-06 Last updated: 2015-09-02

Open Access in DiVA

fulltext(2493 kB)155 downloads
File information
File name FULLTEXT01.pdfFile size 2493 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Zhirkov, IgorRosén, Johanna
By organisation
Thin Film PhysicsFaculty of Science & Engineering
In the same journal
Journal of Applied Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 155 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 214 hits
ReferencesLink to record
Permanent link

Direct link