Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hydrogen adsorption by perforated graphene
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Show others and affiliations
2015 (English)In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 40, no 20, p. 6594-6599Article in journal (Refereed) Published
Abstract [en]

We performed a combined theoretical and experimental study of hydrogen adsorption in graphene systems with defect-induced additional porosity. It is demonstrated that perforation of graphene sheets results in increase of theoretically possible surface areas beyond the limits of ideal defect-free graphene (∼2700 m2/g) with the values approaching ∼5000 m2/g. This in turn implies promising hydrogen storage capacities up to 6.5 wt% at 77 K, estimated from classical Grand canonical Monte Carlo simulations. Hydrogen sorption was studied for the samples of defected graphene with surface area of ∼2900 m2/g prepared using exfoliation of graphite oxide followed by KOH activation. The BET surface area of studied samples thus exceeded the value of single-layered graphene. Hydrogen uptake measured at 77 K and 296 K amounts to 5.5 wt% (30 bar) and to 0.89 wt% (120 bar), respectively. 

Place, publisher, year, edition, pages
Elsevier, 2015. Vol. 40, no 20, p. 6594-6599
Keyword [en]
Graphene-based nanostructures, Hydrogen storage, High surface area, Porous materials
National Category
Physical Sciences Materials Chemistry
Identifiers
URN: urn:nbn:se:umu:diva-104374DOI: 10.1016/j.ijhydene.2015.03.139ISI: 000354581100013OAI: oai:DiVA.org:umu-104374DiVA, id: diva2:839844
Available from: 2015-07-06 Created: 2015-06-10 Last updated: 2018-02-07Bibliographically approved
In thesis
1. Graphite oxides for preparation of graphene related materials: structure, chemical modification and hydrogen storage properties
Open this publication in new window or tab >>Graphite oxides for preparation of graphene related materials: structure, chemical modification and hydrogen storage properties
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Carbon materials have been studied for hydrogen storage for decades, but they showed too low capacity at ambient temperature compared to target values for practical applications. This thesis includes two parts. First one is fundamental study of graphite oxides (GO) structure and properties. Second part is focused on hydrogen storage properties of graphene related materials prepared using GO as a precursor.

We studied the effects of synthesis methods and oxidation degree on solvation/intercalation properties of GOs. New effect of temperature induced reversible delamination was observed for Hummers GO (HGO) immersed in liquid acetonitrile. Experiments with swelling of Brodie GO (BGO) in 1-octanol revealed parallel orientation of the intercalated solvent molecules relative to graphene oxide (GnO) layers. Chemical functionalization of GO in swelled state allowed us to synthesize the materials with subnanometer slit pores supported by molecular pillars. Structure and properties of pillared GO were characterized by variety of methods. Swelling properties of multilayered GnO membranes were compared to properties of precursor GO. GnO membranes were found to swell similarly to GO powders in some solvents and rather differently in other. Our experiments revealed important limitations in application of GO membranes for nanofiltration. Several parameters were found to affect the size of permeation “channels” provided by interlayers of GnO membrane structure: e.g. nature of solvent, pH of solutions and concentration of solutes.

Hydrogen storage parameters were studied for a set of graphene related materials with broad range of surface areas (SSA) (200 - 3300 m2/g). Hydrogen sorption weight percent (wt%) is found to correlate with SSA for all studied graphene materials following the trend standard for other nanostructured carbon materials. The highest hydrogen uptakes of ~1.2 wt% at 296 K and ~7.5 wt% at 77 K were measured for graphene material with SSA of over 3000 m2/g. Addition of Pd and Pt nanoparticles to graphene materials did not resulted in improvement of hydrogen storage compared to nanoparticles-free samples. No deviation from the standard wt% vs. SSA trends was also observed for pillared GO materials. Therefore, hydrogen storage properties of graphene related materials at room temperatures are not confirmed to be exceptional. However, high surface area graphene materials are found to be among the best materials for physisorption of hydrogen at liquid nitrogen temperature. Moreover, hydrogen storage capacity of 4 wt%, comparable to target values, was observed at temperature of solid CO2 (193 K) which can be maintained using common refrigeration methods.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2018. p. 117
Keyword
Graphite oxide, graphene oxide, hydrogen storage, nanomaterials, adsorption, surface area, pore volume
National Category
Other Physics Topics
Research subject
Materials Science
Identifiers
urn:nbn:se:umu:diva-144270 (URN)978-91-7601-841-5 (ISBN)
Public defence
2018-03-02, N430, Naturvetarhuset, Umeå, 13:15 (English)
Opponent
Supervisors
Available from: 2018-02-09 Created: 2018-01-29 Last updated: 2018-02-14Bibliographically approved

Open Access in DiVA

fulltext(734 kB)237 downloads
File information
File name FULLTEXT01.pdfFile size 734 kBChecksum SHA-512
0f9856a1b0e02604349a574f8e6dc49be0ed1985877603903fb692ddab81df3394366180ca57786f8f98b0862f6fa88b367ebb3065e3bdc2aab72a7eac0ab4a8
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Klechikov, AlexeyMercier, GuillaumeTalyzin, Alexandr
By organisation
Department of Physics
In the same journal
International journal of hydrogen energy
Physical SciencesMaterials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 237 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 215 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf