Change search
ReferencesLink to record
Permanent link

Direct link
Fourier decomposition of a plane nonlinear sound wave and transition from Fubini´s to Fay´s solution of Burger´s equation
Responsible organisation
1999 (English)Conference paper (Refereed) PublishedAlternative title
Fourieruppdelning av en plan ickelinjär ljudvåg och dess övergång från Fubinis till Fays lösning till Burgers ekvation (Swedish)
Abstract [en]

Burgers' equation describes plane sound wave propagation through a thermoviscous fluid. If the boundary condition at the sound source is given as a pure sine wave, the exact solution is given by the Cole-Hopf transformation as a quotient between two Fourier series. Two approximate Fourier series representations of this solution are known: Fubini's (1935) solution, neglecting dissipation and valid at short distance from the sound source, and Fay's (1931) solution, valid far from the source. In the present investigation a linear system of equations is found, from which the coefficients in a series expansion of each Fourier coefficient can be derived one by one. Curves which join smoothly to Fubini's solution (valid up to slightly before shock formation) and to Fay's solution (valid for approximately three shock formation distances). Maxima for the Fourier coefficients of the higher harmonics are given. These maxima are situated in a region where neither Fubini's nor Fay's solution is valid.

Place, publisher, year, edition, pages
Göttingen: American Institute of Physics, Melville, New York , 1999.
National Category
Applied Mechanics
URN: urn:nbn:se:bth-10084Local ID: 1-56396-945-9OAI: diva2:838112
Nonlinear Acoustics at the Turn of the Millenium, Proceedings of 15th International Symposium on Nonlinear Acoustics, Göttingen, Germany,
Available from: 2012-09-18 Created: 2002-09-04 Last updated: 2015-06-30Bibliographically approved

Open Access in DiVA

fulltext(141 kB)40 downloads
File information
File name FULLTEXT01.pdfFile size 141 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Hedberg, Claes
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 40 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 41 hits
ReferencesLink to record
Permanent link

Direct link