Change search
ReferencesLink to record
Permanent link

Direct link
Generic Methods for Multi-criteria Evaluation
Responsible organisation
2008 (English)Conference paper (Refereed) PublishedAlternative title
Generiska metoder för multikriterie-baserad utvärdering (Swedish)
Abstract [en]

When evaluating data mining algorithms that are applied to solve real-world problems there are often several, conflicting criteria that need to be considered. We investigate the concept of generic multi-criteria (MC) classifier and algorithm evaluation and perform a comparison of existing methods. This comparison makes explicit some of the important characteristics of MC analysis and focuses on finding out which method is most suitable for further development. Generic MC methods can be described as frameworks for combining evaluation metrics and are generic in the sense that the metrics used are not dictated by the method; the choice of metric is instead dependent on the problem at hand. We discuss some scenarios that benefit from the application of generic MC methods and synthesize what we believe are attractive properties from the reviewed methods into a new method called the candidate evaluation function (CEF). Finally, we present a case study in which we apply CEF to trade-off several criteria when solving a real-world problem.

Abstract [sv]

Traditionellt utvärderas inlärningsalgoritmer och klassificerare avseende ett enskilt kriterium. Detta har visats sig för begränsat för många inlärningsproblem. Denna studie undersöker existerande alternativ för generisk multikriteria-utvärdering och presenterar en ny metod tillsammans med en fallstudie.

Place, publisher, year, edition, pages
Atlanta, Georgia, USA: SIAM Press , 2008.
Keyword [en]
multi-criteria, classifier, evaluation, machine, learning
National Category
Computer Science
URN: urn:nbn:se:bth-8611Local ID: 978-0-89871-654-2OAI: diva2:836352
SIAM International Conference on Data Mining
Available from: 2012-09-18 Created: 2008-04-25 Last updated: 2015-06-30Bibliographically approved

Open Access in DiVA

fulltext(399 kB)24 downloads
File information
File name FULLTEXT01.pdfFile size 399 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Lavesson, Niklas
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 24 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 24 hits
ReferencesLink to record
Permanent link

Direct link