Change search
ReferencesLink to record
Permanent link

Direct link
First principles study of CO reactivity on metallic nano particles
Responsible organisation
2007 (English)Conference paper, Presentation (Refereed) PublishedAlternative title
Första principen studie av CO-reaktivitet på metalliska nanopartiklar (Swedish)
Abstract [en]

The activity of a surface is determined by the local electronic structure. When nano particles are adsorbed, the catalytic properties will change. Surfaces with adsorbed nano particles often show a significantly higher chemical reactivity than the clean counterpart. Gold, for instance, shows an extra high activity towards many reactions, such as low-temperature catalytic combustion, partial oxidation of hydrocarbons and CO oxidation when dispersed as ultra-fine particles on metal oxide surfaces. In the case of CO oxidation, the activity has been observed to depend critically on the nano particle size, the nature of the support and the detailed synthetic procedure. Since it has been observed experimentally that the chemical reactivity of a nanoparticulated surface tend to depend on the size of the adatom structures, suggesting a quantum size effect, we find it well motivated to perform a theoretical investigation with focus on the cluster-size dependence. We have chosen to model CO interaction with sodium nano particles with focus on small particles, containing only a few atoms, since we expect the eventual quantum effects to be most pronounced for these. Further, we limit our investigation to unsupported nano particles because our previous investigations [1] have shown that it is predominately states localized to the nano particle region that contribute to the local electronic structure above the particle itself. The calculations have been performed in the context of density functional theory applying the MIKA real-space program package [2], using norm-conserving pseudo-potentials for the molecule. The nano particle has been modeled as a cylindrically symmetric quantum dot. For further details, see [3,4]. Our results show that the charge transfer between the nano particle and the CO molecule depends critically on the nano particle size, and that this dependence is intimately connected to the local electronic structure at the point where the molecule approaches the particle. The key factor for charge transfer turns out to be the presence of states with the symmetry of the chemically active molecular orbital at the Fermi level. [1] T. Torsti, V. Lindberg, M. J. Puska ,and B. Hellsing, Phys. Rev. B 66, 235420 (2002). [2] M. Heiskanen, T. Torsti, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 63, 245106 (2001). [3] V. Lindberg and B. Hellsing, J. Phys. Condens. Matter 17, S1075 (2005). [4] V. Lindberg, T. Petersson, and B. Hellsing, Surf. Sci. 600, 6 (2006).

Abstract [sv]

En ytas aktivitet bestäms av den lokala elektronstrukturen. När nanopartiklar adsorberas på en metallyta, ändras den lokala elektronstrukturen och därmed också de kemiska egenskaperna. Man har sett att den kemiska reaktiviteten ofta blir större för ytor med adsorberade nanopartiklar, än vad den är för rena ytor. Här studeras hur den kemiska reaktiviteten beror på storleken av de adsorberade nanopartiklarna. Idetta fall CO reaktivitet på en Na-yta. Vi visar att det finns ett tydligt storleksberoende, som kan hänvisas tillbaka på kvantmekaniska effekter.l

Place, publisher, year, edition, pages
Levi, Finland, 2007.
Keyword [en]
nano particle, reaktivity, cathalysis, quantum mechanics, quantum dots
National Category
Mathematics Applied Mechanics
URN: urn:nbn:se:bth-8353Local ID: diva2:836063
Towards Reality in Nanoscale Materials
Note from: 2012-09-18 Created: 2008-11-14 Last updated: 2015-06-30Bibliographically approved

Open Access in DiVA

fulltext(176 kB)10 downloads
File information
File name FULLTEXT01.pdfFile size 176 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Lindberg, Vanja
MathematicsApplied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 10 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 29 hits
ReferencesLink to record
Permanent link

Direct link