Change search
ReferencesLink to record
Permanent link

Direct link
On the Number of Equivalence Classes of Attracting Dynamical Systems
Responsible organisation
2009 (English)In: P-Adic Numbers, Ultrametric Analysis, and Applications, ISSN 2070-0466, E-ISSN 2070-0474, Vol. 1, no 3, 264-270 p.Article in journal (Refereed) PublishedAlternative title
Om antal ekvivalensklasser av attraherande dynamiska system (Swedish)
Abstract [en]

We study discrete dynamical systems of the kind h(x) = x + g(x), where g(x) is a monic irreducible polynomial with coefficients in the ring of integers of a p-adic field K. The dynamical systems of this kind, having attracting fixed points, can in a natural way be divided into equivalence classes, and we investigate whether something can be said about the number of those equivalence classes, for a certain degree of the polynomial g(x).

Abstract [sv]

Vi studerar diskreta dynamiska system över de p-adiska heltalen. Dessa system som har attraherande fixpunkter kan på ett naturligt sätt delas in i ekvivalensklasser. Vad kan vi säga om antalet sådana ekvivalensklasser?

Place, publisher, year, edition, pages
MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC. , 2009. Vol. 1, no 3, 264-270 p.
Keyword [en]
p-adic dynamical systems
National Category
URN: urn:nbn:se:bth-7949DOI: 10.1134/S2070046609030054Local ID: diva2:835630
Available from: 2012-09-18 Created: 2009-09-15 Last updated: 2015-06-30Bibliographically approved

Open Access in DiVA

fulltext(171 kB)14 downloads
File information
File name FULLTEXT01.pdfFile size 171 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Nyqvist, Robert
In the same journal
P-Adic Numbers, Ultrametric Analysis, and Applications

Search outside of DiVA

GoogleGoogle Scholar
Total: 14 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 32 hits
ReferencesLink to record
Permanent link

Direct link