Change search
ReferencesLink to record
Permanent link

Direct link
Decision Support for Estimation of the Utility of Software and E-mail
Blekinge Institute of Technology, School of Computing.
Responsible organisation
2012 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Background: Computer users often need to distinguish between good and bad instances of software and e-mail messages without the aid of experts. This decision process is further complicated as the perception of spam and spyware varies between individuals. As a consequence, users can benefit from using a decision support system to make informed decisions concerning whether an instance is good or bad. Objective: This thesis investigates approaches for estimating the utility of e-mail and software. These approaches can be used in a personalized decision support system. The research investigates the performance and accuracy of the approaches. Method: The scope of the research is limited to the legal grey- zone of software and e-mail messages. Experimental data have been collected from academia and industry. The research methods used in this thesis are simulation and experimentation. The processing of user input, along with malicious user input, in a reputation system for software were investigated using simulations. The preprocessing optimization of end user license agreement classification was investigated using experimentation. The impact of social interaction data in regards to personalized e-mail classification was also investigated using experimentation. Results: Three approaches were investigated that could be adapted for a decision support system. The results of the investigated reputation system suggested that the system is capable, on average, of producing a rating ±1 from an objects correct rating. The results of the preprocessing optimization of end user license agreement classification suggested negligible impact. The results of using social interaction information in e-mail classification suggested that accurate spam detectors can be generated from the low-dimensional social data model alone, however, spam detectors generated from combinations of the traditional and social models were more accurate. Conclusions: The results of the presented approaches suggestthat it is possible to provide decision support for detecting software that might be of low utility to users. The labeling of instances of software and e-mail messages that are in a legal grey-zone can assist users in avoiding an instance of low utility, e.g. spam and spyware. A limitation in the approaches is that isolated implementations will yield unsatisfactory results in a real world setting. A combination of the approaches, e.g. to determine the utility of software, could yield improved results.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Institute of Technology , 2012. , 121 p.
Blekinge Institute of Technology Licentiate Dissertation Series, ISSN 1650-2140 ; 7
National Category
Software Engineering
URN: urn:nbn:se:bth-00533Local ID: 978-91-7295-236-2OAI: diva2:834865
Available from: 2012-09-18 Created: 2012-07-03 Last updated: 2016-09-02Bibliographically approved

Open Access in DiVA

fulltext(972 kB)45 downloads
File information
File name FULLTEXT01.pdfFile size 972 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Borg, Anton
By organisation
School of Computing
Software Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 45 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 84 hits
ReferencesLink to record
Permanent link

Direct link