Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Estimation of the local Hurst function of multifractional Brownian motion: A second difference increment ratio estimator
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2015 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

In this thesis, a specific type of stochastic processes displaying time-dependent regularity is studied. Specifically, multifractional Brownian motion processes are examined. Due to their properties, these processes have gained interest in various fields of research. An important aspect when modeling using such processes are accurate estimates of the time-varying pointwise regularity. This thesis proposes a moving window ratio estimator using the distributional properties of the second difference increments of a discretized multifractional Brownian motion. The estimator captures the behaviour of the regularity on average. In an attempt to increase the accuracy of single trajectory pointwise estimates, a smoothing approach using nonlinear regression is employed. The proposed estimator is compared to an estimator based on the Increment Ratio Statistic.

Abstract [sv]

I denna uppsats studeras en specifik typ av stokastiska processer, vilka uppvisar tidsberoende regelbundenhet. Specifikt behandlas multifraktionella Brownianska rörelser då deras egenskaper föranlett ett ökat forskningsintresse inom flera fält. Vid modellering med sådana processer är noggranna estimat av den punktvisa, tidsberoende regelbundenheten viktig. Genom att använda de distributionella egenskaperna av andra ordningens inkrement i ett rörligt fönster, är det möjligt att skatta den punktvisa regelbundenheten av en sådan process. Den föreslagna estimatorn uppnår i genomsnitt precisa resultat. Dock observeras hög varians i de punktvisa estimaten av enskilda trajektorier. Ickelinjär regression appliceras i ett försök att minska variansen i dessa estimat. Vidare presenteras ytterligare en estimator i utvärderingssyfte.

Place, publisher, year, edition, pages
2015. , 32 p.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:umu:diva-105770OAI: oai:DiVA.org:umu-105770DiVA: diva2:828116
Supervisors
Examiners
Available from: 2015-11-04 Created: 2015-06-29 Last updated: 2015-11-04Bibliographically approved

Open Access in DiVA

Estimation of the local Hurst function of multifractional Brownian motion(1894 kB)242 downloads
File information
File name FULLTEXT01.pdfFile size 1894 kBChecksum SHA-512
3f86f7ca5bcd9789237512343c8af5c6a24ee1b1ec9ed95560792eb65500e167847df796ad566c6d9567eb136038081776e4034b0d042cfde381a19d9d9f0d8e
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Edvinsson, Simon
By organisation
Department of Mathematics and Mathematical Statistics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 242 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 360 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf