Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Complexity in Statistical Relational Learning: A Study on Learning Bayesian Logic Programs
KTH, School of Computer Science and Communication (CSC).
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Komplexitet i statistiskt relationslärande (Swedish)
Abstract [en]

Most work that is done within machine learning today uses statistical methods which assume that the data is identically and independently distributed. However, the problem domains that we face in the real world are often much more complicated and present both complex relational/logical parts as well as parts with uncertainty. Statistical relational learning (SRL) is a sub-field of machine learning and A.I. that tries to solve these limitations by combining both relational and statistical learning and has become a big research sector in recent years. This thesis will present SRL further and specifically introduce, test and review one of the implementations, namely Bayesian logic programs.

Abstract [sv]

Idag används inom maskininlärning nästan alltid statistiska metoder som antar att datat för lärande är identiskt och oberoende distribuerat. Men de problemområden som vi står inför i den verkliga världen är ofta mycket mer komplicerade och har både komplexa relationella/logiska delar samt osäkerhet. Statistiskt relationslärande (SRL) är en del av maskininlärning och A.I. som försöker lösa dessa begränsningar genom att kombinera både relationer och statistiskt lärande och har på senare år blivit ett stort forskningsområde. Denna avhandling presenterar SRL mer i detalj och utreder och testar en specifik implementation, Bayesianska logikprogram.

Place, publisher, year, edition, pages
2015.
Keyword [en]
machine learning, statistical, herbrand, relational, ilp, kreator, learning, bayesian, logic, program, balios, complexity, blp, srl, foi
Keyword [sv]
maskininlärning, relationslärande, herbrand, ilp, kreator, relationer, logik, komplexitet, balios, bayesiansk, blp, srl, foi
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-170160OAI: oai:DiVA.org:kth-170160DiVA: diva2:827501
External cooperation
Totalförsvarets forskningsinstitut (FOI)
Subject / course
Computer Science
Educational program
Master of Science in Engineering -Engineering Physics
Supervisors
Examiners
Available from: 2015-06-29 Created: 2015-06-28 Last updated: 2015-06-29Bibliographically approved

Open Access in DiVA

Fulltext(3462 kB)90 downloads
File information
File name FULLTEXT01.pdfFile size 3462 kBChecksum SHA-512
98bcfecd4075fb87b3b2aebcce221731cadfecad5547ea6c2ae733f342e5f22a99080b210193f6da1685209202d315e81d9ea39c4a91f606b14559be6f8cf668
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 90 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1654 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf