Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Direction estimation using visual odometry
KTH, School of Computer Science and Communication (CSC).
2015 (English)Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesisAlternative title
Uppskattning av riktning med visuell odometri (Swedish)
Abstract [en]

This Master thesis tackles the problem of measuring objects’ directions from a motionlessobservation point. A new method based on a single rotating camera requiring the knowledge ofonly two (or more) landmarks’ direction is proposed. In a first phase, multi-view geometry isused to estimate camera rotations and key elements’ direction from a set of overlapping images.Then in a second phase, the direction of any object can be estimated by resectioning the cameraassociated to a picture showing this object. A detailed description of the algorithmic chain isgiven, along with test results on both synthetic data and real images taken with an infraredcamera.

Abstract [sv]

Detta masterarbete behandlar problemet med att mäta objekts riktningar från en fastobservationspunkt. En ny metod föreslås, baserad på en enda roterande kamera som kräverendast två (eller flera) landmärkens riktningar. I en första fas används multiperspektivgeometri,för att uppskatta kamerarotationer och nyckelelements riktningar utifrån en uppsättningöverlappande bilder. I en andra fas kan sedan riktningen hos vilket objekt som helst uppskattasgenom att kameran, associerad till en bild visande detta objekt, omsektioneras. En detaljeradbeskrivning av den algoritmiska kedjan ges, tillsammans med testresultat av både syntetisk dataoch verkliga bilder tagen med en infraröd kamera.

Place, publisher, year, edition, pages
2015. , 85 p.
Keyword [en]
direction, estimation, visual odometry, camera, compass, keypoint, feature, bundle adjustment
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-169377OAI: oai:DiVA.org:kth-169377DiVA: diva2:820704
External cooperation
THALES Optronique SAS
Subject / course
Computer Science
Educational program
Master of Science in Engineering - Computer Science and Technology
Presentation
2015-04-02, 304, Teknikringen 14, KTH Campus, Stockholm, 09:30 (English)
Supervisors
Examiners
Available from: 2015-06-29 Created: 2015-06-12 Last updated: 2015-06-29Bibliographically approved

Open Access in DiVA

ClementMasson_MasterThesis(4598 kB)135 downloads
File information
File name FULLTEXT01.pdfFile size 4598 kBChecksum SHA-512
d38597e5cd0e04acf9e8abc40d1423664ce4f891ef1776651fdd9e1b4c08181899854e6d3b11621b70b5317499b732526c0d88635e3c2de01350a0d58ab4c99c
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 135 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 59 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf