Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
IDS on Raspberry Pi: A Performance Evaluation
Linnaeus University, Faculty of Technology, Department of Computer Science.
Linnaeus University, Faculty of Technology, Department of Computer Science.
2015 (English)Independent thesis Basic level (university diploma), 5 credits / 7,5 HE creditsStudent thesisAlternative title
IDS på Raspberry Pi : En prestandautvärdering (Swedish)
Abstract [en]

This is a report on the possibility of using a Raspberry Pi as an intrusion detection system in a home environment to increase network security. The focus of this study was on how well two different generations of Raspberry Pi would be able to  handle network traffic while acting as an intrusion detection system. To examine this a testing environment was set up containing two workstation computers connected to a Raspberry Pi, each computer hosting a virtual machine. Tests measuring the network throughput as well as the CPU and memory usage were performed on each of the Raspberry Pi devices. Two models of Raspberry Pis were used; Raspberry Pi model B+ and Raspberry Pi 2 model B; each of them running the operating system Arch Linux ARM. The results of these tests were that both of the Raspberry Pis could be used as an intrusion detection system but has some limitations that could impede usage depending on the requirements of the user. Raspberry Pi 2 model B show benefits of its updated hardware by suffering lower throughput degradation than Raspberry Pi model B+, while using less of it's total CPU and memory capacity.

Abstract [sv]

Den här rapporten behandlar möjligheten att använda en Raspberry Pi som ett intrångdetekteringssystem i en hemma miljö för att öka nätverkssäkerheten. Fokusen i den här studien ligger på hur väl de två senaste generationerna av Raspberry Pi skulle kunna hantera nätverkstrafik samtidigt som den undersöker nätverkstrafiken och söker efter hot. För att kontrollera hur väl en Raspberry Pi kan fungera som ett intrångdetekteringssystem har en laborationsmiljö upprättats bestående av två fysiska maskiner som vardera används för att virtualisera en virtuell maskin. Tester för att mäta datagenomströmning, processor och minnesbelastning utfördes på var och en av Raspberry Pi. Två modeller av Raspberry Pi användes; Raspberry Pi model b+ och Raspberry Pi 2 model b, både körde operativsystemet Arch Linux ARM. Resultatet av testerna visade att det går att använda båda enheterna för att upprätta ett intrångdetekteringssystem, men det finns vissa begränsningar i enheterna vilket kan begränsa implementationsmöjligheterna. Raspberry Pi 2 model B uppvisade bättre resultat i form av att den är lägre belastad och har en högre datagenomströmning till skillnad från Raspberry Pi model B+. Raspberry Pi 2 model B har nyare och snabbare hårdvara vilket är den troliga orsaken till att den presterar bättre.

Place, publisher, year, edition, pages
2015. , 27 p.
Keyword [en]
IDS, intrusion detection system, Raspberry Pi model B+, Raspberry Pi 2 model B, Arch Linux ARM, Snort, network, security, throughput
Keyword [sv]
IDS, intrångdetekteringssystem, Raspberry Pi model B+, Raspberry Pi 2 model B, Arch Linux ARM, Snort, nätverk, säkerhet, datagenomströmning
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:lnu:diva-43997OAI: oai:DiVA.org:lnu-43997DiVA: diva2:819555
Subject / course
Computer Science
Educational program
IT Technician, 120 credits
Supervisors
Examiners
Available from: 2015-06-17 Created: 2015-06-10 Last updated: 2018-01-11Bibliographically approved

Open Access in DiVA

fulltext(1324 kB)2280 downloads
File information
File name FULLTEXT01.pdfFile size 1324 kBChecksum SHA-512
021fa79ba316abc1a26906576a7adc8d77ce92c245c37a49f73fe4dde60e5a836481fa22732dba1d1485d37b44bb0e3e5d7942894d33b21c25430b173a9382a7
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Aspernäs, AndreasSimonsson, Thommy
By organisation
Department of Computer Science
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 2281 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 11916 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf