Change search
ReferencesLink to record
Permanent link

Direct link
Towards a rook-theoretic model for ASEP
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Mot en torn-teoretisk modell för den asymmetriska exklusionsprocessen (Swedish)
Abstract [en]

This thesis analyses the relation between rook covers over Ferrers boards and the Asymetric Exclusion Process (ASEP). A polynomial  defined over the set of all possible rook covers has been suggested to be identical to the polynomial that gives the probabilities of the stationary distribution of the ASEP. In this thesis a draft is presented of a possible proof by induction of this claim, and parts of this induction are proved. Further results regarding  that would follow from the main claim are also independently proved and a complete proof of the claim, invented by another author, is presented for the sake of completeness.

Abstract [sv]

I den här uppsatsen undersöks förhållandet mellan tornplaceringar på Ferrersbräden och den asymmetriska exklusionsprocessen (ASEP). Ett polynom över alla möjliga tornplaceringar har föreslagits vara ekvivalent med polynomet som ger sannolikheterna i den stationära fördelningen för ASEP.

Ett utkast till ett induktionsbevis av detta påstående presenteras i den här upsatsen. Vidare resultat kring (q) som skulle följa från detta huvudpåstående bevisas separat och ett mer utförligt bevis av huvudpåståendet skapat av en annan författare presenteras också.

Place, publisher, year, edition, pages
TRITA-MAT-E, 2015:31
National Category
URN: urn:nbn:se:kth:diva-168568OAI: diva2:817722
Subject / course
Educational program
Master of Science - Applied and Computational Mathematics
Available from: 2015-06-05 Created: 2015-06-04 Last updated: 2015-06-05Bibliographically approved

Open Access in DiVA

fulltext(535 kB)122 downloads
File information
File name FULLTEXT01.pdfFile size 535 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)

Search outside of DiVA

GoogleGoogle Scholar
Total: 122 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 105 hits
ReferencesLink to record
Permanent link

Direct link