Change search
ReferencesLink to record
Permanent link

Direct link
The Dirac Equation for a Particle in a Spherical Box Potential with Application in Bag Modeling
KTH, School of Engineering Sciences (SCI), Theoretical Physics.
KTH, School of Engineering Sciences (SCI), Theoretical Physics.
2015 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

The Dirac equation is a relativistic wave equation and was the first equation to capture spin in relativistic quantum mechanics. Here, the Dirac equation will be derived and solved for a particle in a spherical box potential. Comparisons to the non-relativistic Schrödinger equation as well as to a relativistically corrected Schrödinger equation will be made. Applications of the Dirac equation, such as the Bogoliubov model, are examined and discussed and it is validated that the Dirac equation can provide knowledge about elementary particles.

Abstract [sv]

Dirac-ekvationen är en relativistisk vågekvation och var den första ekvationen att inkludera spinn i relativistisk kvantmekanik. I vår rapport kommer Dirac-ekvationen att härledas och lösas för en partikel i en sfärisk lådpotential. Den kommer sedan att jämföras med den icke-relativistiska Schrödinger-ekvationen samt en relativistiskt korrigerad Schrödinger-ekvation. Några av Dirac-ekvationens användningsområden, såsom för Bogoliubovs modell, kommer att undersökas och diskuteras och det faktum att Diracekvationen kan ge oss information om hur elementära partiklar fungerar valideras.

Place, publisher, year, edition, pages
2015. , 28 p.
National Category
Physical Sciences
URN: urn:nbn:se:kth:diva-168309OAI: diva2:815669
Available from: 2015-06-01 Created: 2015-06-01 Last updated: 2015-06-01Bibliographically approved

Open Access in DiVA

fulltext(443 kB)835 downloads
File information
File name FULLTEXT01.pdfFile size 443 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Theoretical Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 835 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 1332 hits
ReferencesLink to record
Permanent link

Direct link