Change search
ReferencesLink to record
Permanent link

Direct link
Site-Specific Radioiodination of HER2-Targeting Affibody Molecules using 4-Iodophenethylmaleimide Decreases Renal Uptake of Radioactivity
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
Show others and affiliations
2015 (English)In: ChemistryOpen, ISSN 2191-1363, Vol. 4, no 2, 174-182 p.Article in journal (Refereed) Published
Abstract [en]

Affibody molecules are small scaffold-based affinity proteins with promising properties as probes for radionuclide-based molecular imaging. However, a high reabsorption of radiolabeled Affibody molecules in kidneys is an issue. We have shown that the use of I-125-3-iodo-((4-hydroxyphenyl)ethyl)maleimide (IHPEM) for site-specific labeling of cysteine-containing Affibody molecules provides high tumor uptake but low radioactivity retention in kidneys. We hypothesized that the use of 4-iodophenethylmaleimide (IPEM) would further reduce renal retention of radioactivity because of higher lipophilicity of radiometabolites. An anti-human epidermal growth factor receptor type2 (HER2) Affibody molecule (Z(HER2:2395)) was labeled using I-125-IPEM with an overall yield of 45 +/- 3%. I-125-IPEM-Z(HER2:2395) bound specifically to HER2-expressing human ovarian carcinoma cells (SKOV-3 cell line). In NMRI mice, the renal uptake of I-125-IPEM-Z(HER2:2395) (24 +/- 2 and 5.7 +/- 0.3%IAg(-1)at 1 and 4 h after injection, respectively) was significantly lower than uptake of I-125-IHPEM-Z(HER2:2395) (50 +/- 8 and 12 +/- 2%IAg(-1)at 1 and 4 h after injection, respectively). In conclusion, the use of a more lipophilic linker for the radioiodination of Affibody molecules reduces renal radioactivity.

Place, publisher, year, edition, pages
2015. Vol. 4, no 2, 174-182 p.
Keyword [en]
affibody molecules, drug design, iodophenethylmaleimide, radiolabeling, radiopharmaceuticals
National Category
Chemical Sciences
URN: urn:nbn:se:uu:diva-253262DOI: 10.1002/open.201402097ISI: 000353653800014PubMedID: 25969816OAI: diva2:814329
Available from: 2015-05-26 Created: 2015-05-25 Last updated: 2015-10-01Bibliographically approved
In thesis
1. Affibody Molecules for PET Imaging
Open this publication in new window or tab >>Affibody Molecules for PET Imaging
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Optimization of Affibody molecules would allow for high contrast imaging of cancer associated surface receptors using molecular imaging. The primary aim of the thesis was to develop Affibody-based PET imaging agents to provide the highest possible sensitivity of RTK detection in vivo. The thesis evaluates the effect of radiolabelling chemistry on biodistribution and targeting properties of Affibody molecules directed against HER2 and PDGFRβ. The thesis is based on five published papers (I-V).

Paper I. The targeting properties of maleimido derivatives of DOTA and NODAGA for site-specific labelling of a recombinant HER2-binding Affibody molecule radiolabelled with 68Ga were compared in vivo. Favourable in vivo properties were seen for the Affibody molecule with the combination of 68Ga with NODAGA.

Paper II. The aim was to compare the biodistribution of 68Ga- and 111In-labelled HER2-targeting Affibody molecules containing DOTA, NOTA and NODAGA at the N-terminus. This paper also demonstrated favourable in vivo properties for Affibody molecules in combination with 68Ga and NODAGA placed on the N-terminus.

Paper III.  The influence of chelator positioning on the synthetic anti-HER2 affibody molecule labelled with 68Ga was investigated. The chelator DOTA was conjugated either at the N-terminus, the middle of helix-3 or at the C-terminus of the Affibody molecules. The N-terminus placement provided the highest tumour uptake and tumour-to-organ ratios.

Paper IV. The aim of this study was to evaluate if the 68Ga labelled PDGFRβ-targeting Affibody would provide an imaging agent suitable for PDGFRβ visualization using PET. The 68Ga labelled conjugate provided high-contrast imaging of PDGFRβ-expressing tumours in vivo using microPET as early as 2h after injection.

Paper V. This paper investigated if the replacement of IHPEM with IPEM as a linker molecule for radioiodination of Affibody molecules would reduce renal retention of radioactivity. Results showed that the use of the more lipophilic linker IPEM reduced the renal radioactivity retention for radioiodinated Affibody molecules.

In conclusion, this thesis clearly demonstrates that the labelling strategy is of great importance with a substantial influence on the targeting properties of Affibody molecules and should be taken under serious considerations when developing new imaging agents.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 70 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1125
Affibody molecules, Molecular imaging, PET, Radiolabelling, HER2, PDGFRβ
National Category
Medical and Health Sciences
Research subject
Biomedical Radiation Science
urn:nbn:se:uu:diva-259410 (URN)978-91-554-9299-1 (ISBN)
Public defence
2015-10-03, Fåhraeussalen, Rudbecklaboratoriet, Dag Hammarskjölds väg 20, 751 85, Uppsala, 09:00 (English)
Available from: 2015-09-03 Created: 2015-08-03 Last updated: 2015-10-01

Open Access in DiVA

fulltext(711 kB)115 downloads
File information
File name FULLTEXT01.pdfFile size 711 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Strand, JoannaNordeman, PatrikHonarvar, HadisAltai, MohamedOrlova, AnnaLarhed, MatsTolmachev, Vladimir
By organisation
Medical Radiation SciencePreclinical PET Platform
In the same journal
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 115 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 484 hits
ReferencesLink to record
Permanent link

Direct link