Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Back-to-Back 2L-3L Grid Integration of a Marine Current Energy Converter
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
2015 (English)In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 8, no 2, 808-820 p.Article in journal (Refereed) Published
Abstract [en]

The paper proposes a back-to-back 2L-3L grid connection topology for a marine current energy converter. A prototype marine current energy converter has been deployed by a research group at Uppsala University. The concept behind the prototype revolves around a fixed pitch vertical axis turbine directly connected to a permanent magnet synchronous generator (PMSG). The proposed grid connection system utilizes a well known and proven two level voltage source converter generator-side combined with a three-level cascaded H-bridge (CHB) multilevel converter grid-side. The multilevel converter brings benefits in terms of efficiency, power quality and DC-link utilization. The system is here presented for a single marine current energy converter but can easily be scaled up for clusters of marine current energy converters. Control schemes for both grid-side and generator-side voltage source converters are presented. The start-up, steady state and dynamic performance of the marine current energy converter are investigated and simulation results are presented in this paper.

Place, publisher, year, edition, pages
2015. Vol. 8, no 2, 808-820 p.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:uu:diva-253090DOI: 10.3390/en8020808ISI: 000353555400001OAI: oai:DiVA.org:uu-253090DiVA: diva2:814294
Available from: 2015-05-26 Created: 2015-05-20 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Grid Connection of Permanent Magnet Generator Based Renewable Energy Systems
Open this publication in new window or tab >>Grid Connection of Permanent Magnet Generator Based Renewable Energy Systems
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Renewable energy is harnessed from continuously replenishing natural processes. Some commonly known are sunlight, water, wind, tides, geothermal heat and various forms of biomass. The focus on renewable energy has over the past few decades intensified greatly. This thesis contributes to the research on developing renewable energy technologies, within the wind power, wave power and marine current power projects at the division of Electricity, Uppsala University. In this thesis grid connection of permanent magnet generator based renewable energy sources is evaluated.

A tap transformer based grid connection system has been constructed and experimentally evaluated for a vertical axis wind turbine. Full range variable speed operation of the turbine is enabled by using the different step-up ratios of a tap transformer. This removes the need for a DC/DC step or an active rectifier on the generator side of the full frequency converter and thereby reduces system complexity. Experiments and simulations of the system for variable speed operation are done and efficiency and harmonic content are evaluated. 

The work presented in the thesis has also contributed to the design, construction and evaluation of a full-scale offshore marine substation for wave power intended to grid connect a farm of wave energy converters. The function of the marine substation has been experimentally tested and the substation is ready for deployment. Results from the system verification are presented. Special focus is on the transformer losses and transformer in-rush currents.

A control and grid connection system for a vertical axis marine current energy converter has been designed and constructed. The grid connection is done with a back-to-back 2L-3L system with a three level cascaded H-bridge converter grid side. The system has been tested in the laboratory and is ready to be installed at the experimental site. Results from the laboratory testing of the system are presented.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 79 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1436
Keyword
VAWT, H-rotor, Tap Transformer, Cascaded H-bridge Multi-Level, Renewable Energy, Wind power, Wave power, Marine Current Power
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-304659 (URN)978-91-554-9712-5 (ISBN)
Public defence
2016-11-25, Polhemsalen, 10134, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:00 (English)
Opponent
Supervisors
Projects
Wind PowerWave PowerMarine Currnet Power
Available from: 2016-11-03 Created: 2016-10-06 Last updated: 2016-11-16Bibliographically approved

Open Access in DiVA

fulltext(795 kB)214 downloads
File information
File name FULLTEXT01.pdfFile size 795 kBChecksum SHA-512
bf6bcc8c569241ce94f7cb077b2ad5e4298c1efa8bb4e67a2fcff5ece9f9d2f12542306db95bc471c4072d8c2b17473cba603a1a1d83c56f5c9391d6ff3396d5
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Apelfrojd, SenadEkström, RickardThomas, KarinLeijon, Mats
By organisation
Electricity
In the same journal
Energies
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 214 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 703 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf