Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Weight Matrix Adaptation for increased Memory Storage Capacity in a Spiking Hopfield Network
KTH, School of Engineering Sciences (SCI).
KTH, School of Engineering Sciences (SCI).
2015 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

Lagringskapaciteten i ett litet spiking Hopfieldnätverk undersöks med hjälp av två parametrar som styr resistansen och inhibitionen hos de synaptiska kopplingarna. Det är motiverat av möjligheten att skapa större associativa nätverk från små nätverkskluster. Den här typen av nätverksarkitekturer har observerats i naturen och skulle kunna vara grunden till framtida applikationer.

Undersökningen är genomförd med hjälp av simulatorer, neuronmodeller av typen integrate-and-fire och statiska synapser. Flera olika typer av binäramönster används för att ge en detaljerad analys av lagringskapaciteten.

De undersökta parametrarna har inverkan på lagringskapaciteten hosnätverket. Även skillnader i kapacitet mellan olika mönster är observerat.

Abstract [en]

The storage capacity of a small spiking Hopfield network is investigated in terms of two parameters governing the conductance and inhibition of the synaptic connections. This is motivated by the possibility of constructing larger associative networks from small network clusters. These kinds of network architectures have been observed in nature and could possibly be a foundation for future applications.

The investigation is conducted using simulations of integrate-and-fire neuron models and static synapses. Several different types of binary patterns are used to provide a detailed analysis of the storage capacity.

The investigated parameters have influence on the storage capacity of the network and the capacity may be improved with the right choice of parameters. Also, differences in capacity for different pattern types are observed.

Place, publisher, year, edition, pages
2015. , 34 p.
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-167996OAI: oai:DiVA.org:kth-167996DiVA: diva2:813801
Supervisors
Available from: 2015-05-25 Created: 2015-05-25 Last updated: 2015-05-25Bibliographically approved

Open Access in DiVA

fulltext(1095 kB)197 downloads
File information
File name FULLTEXT01.pdfFile size 1095 kBChecksum SHA-512
227d3f346f3dcebc704f7513cca145360982356f48fadcff306e678e842cfacad6a9882f32fa270a184f25fe0be33e0664a59a9f7dc38014468546ba829573cd
Type fulltextMimetype application/pdf

By organisation
School of Engineering Sciences (SCI)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 197 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 452 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf