Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-density Real-time Virtual Crowds via Unilaterally Incompressible Fluid Simulation
KTH, School of Engineering Sciences (SCI).
KTH, School of Engineering Sciences (SCI).
2015 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Human crowds experience limited individual freedom of motion and tend to exhibit aggregate behavior at high densities. This observation can be exploited in simulations by representing virtual crowds as both distinct agents and continua. We introduce a global planning algorithm suitable for navigating large virtual crowds of agents. These crowds are in turn modeled as unilaterally incompressible fluids to effectively simulate large-scale behavior. The algorithm is ultimately tested on certain specific scenarios with the intention of detecting common emergent behaviors, to finally draw conclusions on its ability to simulate real-life situations.

Abstract [sv]

Folkmassor upplever begränsad individuell rörelsefrihet och tenderar att bete sig som enstaka enheter vid höga densiteter. Denna observation kan utnyttjas i simuleringar genom att representera virtuella folkmassor som både distinkta individer och som kontinuum. Vi introducerar en global algoritm för navigering, lämplig för att kunna styra stora virtuella ansamlingar av individer. Dessa folkmassor modelleras i sin tur som ensidigt inkompressibla vätskor för att på ett effektivt sätt kunna simulera storskaliga beteenden. Algoritmen utvärderas för specifika scenarion där uppkommande beteenden studeras, för att slutligen dra slutsatser om dess förmåga att simulera verkliga situationer.

Place, publisher, year, edition, pages
2015. , 8 p.
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-167995OAI: oai:DiVA.org:kth-167995DiVA: diva2:813795
Supervisors
Available from: 2015-05-25 Created: 2015-05-25 Last updated: 2015-05-27Bibliographically approved

Open Access in DiVA

fulltext(5123 kB)324 downloads
File information
File name FULLTEXT01.pdfFile size 5123 kBChecksum SHA-512
0418c93810d58d4ab9b29e39794ac6404e7c042613269a777060378e829025bc4b0c4ba369c2e81e156cc6f6b149c6c57585380e2fe2a95016ed2b8d34b0b547
Type fulltextMimetype application/pdf

By organisation
School of Engineering Sciences (SCI)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 324 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1155 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf