Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modelling and experimental evaluation of driver behaviour during single wheel hub motor failures
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.ORCID iD: 0000-0001-7427-2584
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.ORCID iD: 0000-0001-8928-0368
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.ORCID iD: 0000-0002-4048-3452
2015 (English)In: Proceedings of the 3rd International Symposium on Future Active Safety Technology Towards zero traffic accidents (FASTzero'15), 2015Conference paper, Published paper (Refereed)
Abstract [en]

A failure-sensitive driver model has been developed in the research study presented in this paper. The model is based on measurements of human responses to dierent failure conditions inuencing the vehicle directional stability in a moving-base driving simulator. The measurements were made in a previous experimental study where test subjects were exposed to three sudden failure conditions that required adequate corrective measures to maintain the vehicle control and regain the planned trajectory. A common driver model and a failure-sensitive driver model have been compared, and results for the latter agree well with the measured data. The proposed failure-sensitive driver model is capable of maintaining the vehicle control and regaining the planned trajectory similarly to the way in which humans achieved this during a wheel hub motor failure in one of the rear wheels.

Place, publisher, year, edition, pages
2015.
Keyword [en]
Driver model, human behaviour, wheel hub motor failure, driving simulator, vehicle dynamics
National Category
Vehicle Engineering
Research subject
Vehicle and Maritime Engineering
Identifiers
URN: urn:nbn:se:kth:diva-166829OAI: oai:DiVA.org:kth-166829DiVA: diva2:812514
Conference
3rd International Symposium on Future Active Safety Technology Towards zero traffic accidents (FASTzero'15)
Note

QC 20150520

Available from: 2015-05-19 Created: 2015-05-19 Last updated: 2015-05-20Bibliographically approved
In thesis
1. Controlling over-actuated road vehicles during failure conditions
Open this publication in new window or tab >>Controlling over-actuated road vehicles during failure conditions
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The aim of electrification of chassis and driveline systems in road vehicles is to reduce the global emissions and their impact on the environment. The electrification of such systems in vehicles is enabling a whole new set of functionalities improving safety, handling and comfort for the user. This trend is leading to an increased number of elements in road vehicles such as additional sensors, actuators and software codes. As a result, the complexity of vehicle components and subsystems is rising and has to be handled during operation. Hence, the probability of potential faults that can lead to component or subsystem failures deteriorating the dynamic behaviour of road vehicles is becoming higher. Mechanical, electric, electronic or software faults can cause these failures independently or by mutually influencing each other, thereby leading to potentially critical traffic situations or even accidents. There is a need to analyse faults regarding their influence on the dynamic behaviour of road vehicles and to investigate their effect on the driver-vehicle interaction and to find new control strategies for fault handling.

A structured method for the classification of faults regarding their influence on the longitudinal, lateral and yaw motion of a road vehicle is proposed. To evaluate this method, a broad failure mode and effect analysis was performed to identify and model relevant faults that have an effect on the vehicle dynamic behaviour. This fault classification method identifies the level of controllability, i.e. how easy or difficult it is for the driver and the vehicle control system to correct the disturbance on the vehicle behaviour caused by the fault.

Fault-tolerant control strategies are suggested which can handle faults with a critical controllability level in order to maintain the directional stability of the vehicle. Based on the principle of control allocation, three fault-tolerant control strategies are proposed and have been evaluated in an electric vehicle with typical faults. It is shown that the control allocation strategies give a less critical trajectory deviation compared to an uncontrolled vehicle and a regular electronic stability control algorithm. An experimental validation confirmed the potential of this type of fault handling using one of the proposed control allocation strategies.

Driver-vehicle interaction has been experimentally analysed during various failure conditions with typical faults of an electric driveline both at urban and motorway speeds. The driver reactions to the failure conditions were analysed and the extent to which the drivers could handle a fault were investigated. The drivers as such proved to be capable controllers by compensating for the occurring failures in time when they were prepared for the eventuality of a failure. Based on the experimental data, a failure-sensitive driver model has been developed and evaluated for different failure conditions. The suggested fault classification method was further verified with the conducted experimental studies.

The interaction between drivers and a fault-tolerant control system with the occurrence of a fault that affects the vehicle dynamic stability was investigated further. The control allocation strategy has a positive influence on maintaining the intended path and the vehicle stability, and supports the driver by reducing the necessary corrective steering effort. This fault-tolerant control strategy has shown promising results and its potential for improving traffic safety.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. xii, 84 p.
Series
TRITA-AVE, ISSN 1651-7660 ; 2015:23
Keyword
vehicle dynamics, vehicle safety, driver-vehicle interaction, failure analysis, wheel hub motor failure, over-actuation, fault-tolerant control
National Category
Vehicle Engineering
Research subject
Vehicle and Maritime Engineering
Identifiers
urn:nbn:se:kth:diva-166819 (URN)978-91-7595-597-1 (ISBN)
Public defence
2015-06-05, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 09:30 (English)
Opponent
Supervisors
Note

QC 20150520

Available from: 2015-05-20 Created: 2015-05-19 Last updated: 2015-05-20Bibliographically approved

Open Access in DiVA

fulltext(2740 kB)118 downloads
File information
File name FULLTEXT01.pdfFile size 2740 kBChecksum SHA-512
17df74352f53e175710d646b159f90069d8c8e0021ace9c72d39e671a0ae8d6139eb78c79a42344b9dda3c72bdf473f3060c92b7ea48ac613c8f33232fa23249
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Wanner, DanielDrugge, LarsEdrén, JohannesStensson Trigell, Annika
By organisation
Vehicle Dynamics
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 118 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 500 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf