Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mo2Ga2C: a new ternary nanolaminated carbide
Drexel University, PA 19104 USA.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Show others and affiliations
2015 (English)In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 51, no 30, 6560-6563 p.Article in journal (Refereed) Published
Abstract [en]

We report the discovery of a new hexagonal Mo2Ga2C phase, wherein two Ga layers - instead of one - are stacked in a simple hexagonal arrangement in between Mo2C layers. It is reasonable to assume this compound is the first of a larger family.

Place, publisher, year, edition, pages
Royal Society of Chemistry , 2015. Vol. 51, no 30, 6560-6563 p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:liu:diva-117813DOI: 10.1039/c5cc00980dISI: 000352269000022PubMedID: 25768789OAI: oai:DiVA.org:liu-117813DiVA: diva2:811248
Note

Funding Agencies|Swedish Research Council [621-2011-4420, 642-2013-8020, 621-2014-4890]; Swedish Foundation for Strategic Research through the Synergy Grant FUNCASE Functional Carbides for Advanced Surface Engineering; Future Research Leaders 5 Program; ERC [258509]; Ningbo Natural Science Foundation [2013A610128]; National Natural Science Foundation of China [U1232136]; Knut and Alice Wallenberg Foundation

Available from: 2015-05-11 Created: 2015-05-08 Last updated: 2017-12-04
In thesis
1. Thin Film Synthesis of New Nanolaminated Ternary Carbides
Open this publication in new window or tab >>Thin Film Synthesis of New Nanolaminated Ternary Carbides
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Ternary transition metal carbides with inherently nanolaminated crystal structure are a class of materials with typically higher damage tolerance, better machinability and lower brittleness compared to the binary counterparts, yet retaining their satisfactory electrical and thermal conductivity. Their interesting properties can be related to the laminated structure. Though studies of their properties based on calculations and bulk materials have suggested potential thin film applications, such as high temperature hard coatings and electrical contacts, a relatively small number of these phases have been synthesized as thin films.  Investigation of thin film deposition of these inherently nanolaminated materials further the understanding of their phase formation and crystal growth.

Motivated by predicted superconductivity and thermoelectric properties of molybdenum carbides and related layered molybdenum compounds, nanolaminated materials in the Mo-Ga-C ternary system were studied. Apart from the previously reported Mo2GaC, a new layered carbide, Mo2Ga2C, was synthesized in both thin film and bulk form with a postulated crystal structure related to Mo2GaC. The proposed structure was further validated by first principles calculations, showing higher stability compared to other crystal structure as well as other competing phases. The calculated lattice parameters were consistent with values from Rietveld analysis of X-ray and neutron diffraction patterns. In addition, both scanning transmission electron microscopy and X-ray photoelectron spectroscopy showed experimental evidence of the close structural-chemical relation between Mo2Ga2C and Mo2GaC.

Driven by a need of high temperature protective coatings in nuclear applications, Zr-based nanolaminated carbides have become more attractive. In this work, another nanolaminated carbide, Zr2Al3C4, was synthesized in thin film form by pulsed cathodic arc deposition. Formation of the Zr2Al3C4 phase and its competing phases was studied with X-ray diffraction of thin films deposited with varying incoming flux compositions, temperatures and substrate materials. On 4H-SiC(001) substrates, highly phase-pure epitaxial Zr2Al3C4 films were formed, whereas depositions on Al2O3(001) substrates resulted in competing phases. A growth behavior similar to that of nanolaminated Mn+1AXn phases (M is a group 3-7 transition metal; A is commonly a group 13-14 element; X is C or N; n = 1 - 3) was observed, despite the structuraland chemical differences between Zr2Al3C4 and MAX phases.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2016. 41 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1728
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-125289 (URN)10.3384/lic.diva-125289 (DOI)978-91-7685-960-5 (ISBN)
Presentation
2015-10-02, Jordan/Fermi, J402, Fysikhuset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Note

The series name Linköping Studies in Science and Technology Licentiate Thesis is incorrect. Correct series name is Linköping Studies in Science and Technology. Thesis.

Available from: 2016-02-19 Created: 2016-02-19 Last updated: 2016-02-24Bibliographically approved
2.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

fulltext(1863 kB)