Change search
ReferencesLink to record
Permanent link

Direct link
Measuring CO2 emissions induced by online and brick-and-mortar retailing
Dalarna University, School of Technology and Business Studies, Statistics.ORCID iD: 0000-0003-2317-9157
Dalarna University, School of Technology and Business Studies, Statistics.
Dalarna University, School of Technology and Business Studies, Information Systems. Dalarna University, School of Technology and Business Studies, Human Geography.ORCID iD: 0000-0003-4871-833X
Dalarna University, School of Technology and Business Studies, Statistics.ORCID iD: 0000-0003-2970-9622
Show others and affiliations
2014 (English)Report (Other academic)
Abstract [en]

We develop a method for empirically measuring the difference in carbon footprint between traditional and online retailing (“e-tailing”) from entry point to a geographical area to consumer residence. The method only requires data on the locations of brick-and-mortar stores, online delivery points, and residences of the region’s population, and on the goods transportation networks in the studied region. Such data are readily available in most countries, so the method is not country or region specific. The method has been evaluated using data from the Dalecarlia region in Sweden, and is shown to be robust to all assumptions made. In our empirical example, the results indicate that the average distance from consumer residence to a brick-and-mortar retailer is 48.54 km in the studied region, while the average distance to an online delivery point is 6.7 km. The results also indicate that e-tailing increases the average distance traveled from the regional entry point to the delivery point from 47.15 km for a brick-and-mortar store to 122.75 km for the online delivery points. However, as professional carriers transport the products in bulk to stores or online delivery points, which is more efficient than consumers’ transporting the products to their residences, the results indicate that consumers switching from traditional to e-tailing on average reduce their CO2 footprints by 84% when buying standard consumer electronics products. 

Place, publisher, year, edition, pages
Stockholm: HUI Research , 2014. , 30 p.
, HUI Working Papers, 106
Keyword [en]
E-tailing; Spatial distribution of firms and consumers; p-median model; Emission measurement; Emission reduction
National Category
Economic Geography Economics Computer and Information Science
Research subject
Complex Systems – Microdata Analysis, General Microdata Analysis - methods; Complex Systems – Microdata Analysis, General Microdata Analysis - retail; Complex Systems – Microdata Analysis, General Microdata Analysis - transports
URN: urn:nbn:se:du-17360OAI: diva2:810557
Available from: 2015-05-07 Created: 2015-05-07 Last updated: 2015-12-11Bibliographically approved
In thesis
1. Optimization heuristic solutions, how good can they be?: With empirical applications in location problems
Open this publication in new window or tab >>Optimization heuristic solutions, how good can they be?: With empirical applications in location problems
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Combinatorial optimization problems, are one of the most important types of problems in operational research. Heuristic and metaheuristics algorithms are widely applied to find a good solution. However, a common problem is that these algorithms do not guarantee that the solution will coincide with the optimum and, hence, many solutions to real world OR-problems are afflicted with an uncertainty about the quality of the solution. The main aim of this thesis is to investigate the usability of statistical bounds to evaluate the quality of heuristic solutions applied to large combinatorial problems. The contributions of this thesis are both methodological and empirical. From a methodological point of view, the usefulness of statistical bounds on p-median problems is thoroughly investigated. The statistical bounds have good performance in providing informative quality assessment under appropriate parameter settings. Also, they outperform the commonly used Lagrangian bounds. It is demonstrated that the statistical bounds are shown to be comparable with the deterministic bounds in quadratic assignment problems. As to empirical research, environment pollution has become a worldwide problem, and transportation can cause a great amount of pollution. A new method for calculating and comparing the CO2-emissions of online and brick-and-mortar retailing is proposed. It leads to the conclusion that online retailing has significantly lesser CO2-emissions. Another problem is that the Swedish regional division is under revision and the border effect to public service accessibility is concerned of both residents and politicians. After analysis, it is shown that borders hinder the optimal location of public services and consequently the highest achievable economic and social utility may not be attained.

Abstract [sv]

Kombinatoriska optimeringsproblem, är en av de viktigaste typerna av problem i operationsanalys (OR). Heuristiska och metaheuristiska algoritmer tillämpas allmänt för att hitta lösningar med hög kvalitet. Ett vanligt problem är dock att dessa algoritmer inte garanterar optimala lösningar och sålunda kan det finnas osäkerhet i kvaliteten på lösningar på tillämpade operationsanalytiska problem. Huvudsyftet med denna avhandling är att undersöka användbarheten av statistiska konfidensintervall för att utvärdera kvaliteten på heuristiska lösningar då de tillämpas på stora kombinatoriska optimeringsproblem. Bidragen från denna avhandling är både metodologiska och empiriska. Ur metodologisk synvinkel har nyttan av statistiska konfidensintervall för ett lokaliseringsproblem (p-median problemet) undersökts. Statistiska konfidensintervall fungerar väl för att tillhandahålla information om lösningens kvalitet vid rätt implementering av problemen. Statistiska konfidensintervall överträffar även intervallen som erhålls vid den vanligen använda Lagrange-relaxation. I avhandlingen visas även på att metoden med statistiska konfidensintervall är fungerar väl jämfört med många andra deterministiska intervall i ett mer komplexa optimeringsproblem som det kvadratiska tilldelningsproblemet. P-median problemet och de statistiska konfidensintervallen har implementerats empiriskt för att beräkna och jämföra e-handelns och traditionell handels CO2-utsläpp från transporter, vilken visar att ehandel medför betydligt mindre CO2-utsläpp. Ett annat lokaliseringsproblem som analyserats empiriskt är hur förändringar av den regionala administrativa indelningen av Sverige, vilket är en aktuell och pågående samhällsdiskussion, påverkar medborgarnas tillgänglighet till offentlig service. Analysen visar att regionala administrativa iv gränserna lett till en suboptimal placering av offentliga tjänster. Därmed finns en risk att den samhällsekonomiska nyttan av dessa tjänster är suboptimerad.

Place, publisher, year, edition, pages
Borlänge: Högskolan Dalarna, 2015. 200 p.
Dalarna Doctoral Dissertations, 2
National Category
Computational Mathematics
Research subject
Komplexa system - mikrodataanalys
urn:nbn:se:du-17353 (URN)978-91-89020-94-8 (ISBN)
Public defence
2015-04-23, Clas Ohlson, Borlänge, 10:00 (English)
Available from: 2015-05-07 Created: 2015-05-06 Last updated: 2015-05-18Bibliographically approved

Open Access in DiVA

fulltext(741 kB)36 downloads
File information
File name FULLTEXT01.pdfFile size 741 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Search in DiVA

By author/editor
Carling, KennethHan, MengjieHåkansson, JohanMeng, XiangliRudholm, Niklas
By organisation
StatisticsInformation SystemsHuman GeographyEconomics
Economic GeographyEconomicsComputer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 36 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 506 hits
ReferencesLink to record
Permanent link

Direct link