Change search
ReferencesLink to record
Permanent link

Direct link
Modelling the optical and radiative properties of freshly emitted light absorbing carbon within an atmospheric chemical transport model
SMHI, Research Department, Air quality.ORCID iD: 0000-0001-5695-1356
2010 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 10, no 3, 1403-1416 p.Article in journal (Refereed) Published
Abstract [en]

Light absorbing carbon (LAC) aerosols have a complex, fractal-like aggregate structure. Their optical and radiative properties are notoriously difficult to model, and approximate methods may introduce large errors both in the interpretation of aerosol remote sensing observations, and in quantifying the direct radiative forcing effect of LAC. In this paper a numerically exact method for solving Maxwell's equations is employed for computing the optical properties of freshly emitted, externally mixed LAC aggregates. The computations are performed at wavelengths of 440 nm and 870 nm, and they cover the entire size range relevant for modelling these kinds of aerosols. The method for solving the electromagnetic scattering and absorption problem for aggregates proves to be sufficiently stable and fast to make accurate multiple-band computations of LAC optical properties feasible. The results from the electromagnetic computations are processed such that they can readily be integrated into a chemical transport model (CTM), which is a prerequisite for constructing robust observation operators for chemical data assimilation of aerosol optical observations. A case study is performed, in which results obtained with the coupled optics/CTM model are employed as input to detailed radiative transfer computations at a polluted European location. It is found that the still popular homogeneous sphere approximation significantly underestimates the radiative forcing at top of atmosphere as compared to the results obtained with the aggregate model. Notably, the LAC forcing effect predicted with the aggregate model is less than that one obtains by assuming a prescribed mass absorption cross section for LAC.

Place, publisher, year, edition, pages
2010. Vol. 10, no 3, 1403-1416 p.
National Category
Meteorology and Atmospheric Sciences
Research subject
Environment
Identifiers
URN: urn:nbn:se:smhi:diva-579ISI: 000274410000036OAI: oai:DiVA.org:smhi-579DiVA: diva2:806779
Available from: 2015-04-21 Created: 2015-04-20 Last updated: 2016-11-21Bibliographically approved

Open Access in DiVA

fulltext(1827 kB)3 downloads
File information
File name FULLTEXT01.pdfFile size 1827 kBChecksum SHA-512
2f2280577a1d6c6e8891385048d2b69e79f614d2ed7fb3c185e6b1e0886668e4bde1ff1cdba694ac57bc26cb1f1afed5b8c4a02d555564a6b1fe8da6bdadd542
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Kahnert, Michael
By organisation
Air quality
In the same journal
Atmospheric Chemistry And Physics
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 3 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 17 hits
ReferencesLink to record
Permanent link

Direct link