Change search
ReferencesLink to record
Permanent link

Direct link
Characteristics of water-vapour inversions observed over the Arctic by Atmospheric Infrared Sounder (AIRS) and radiosondes
SMHI, Research Department, Atmospheric remote sensing.ORCID iD: 0000-0002-6717-8343
SMHI, Research Department, Atmospheric remote sensing.ORCID iD: 0000-0003-3101-9401
2011 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 11, no 18, 9813-9823 p.Article in journal (Refereed) Published
Abstract [en]

An accurate characterization of the vertical structure of the Arctic atmosphere is useful in climate change and attribution studies as well as for the climate modelling community to improve projections of future climate over this highly sensitive region. Here, we investigate one of the dominant features of the vertical structure of the Arctic atmosphere, i.e. water-vapour inversions, using eight years of Atmospheric Infrared Sounder data (2002-2010) and radiosounding profiles released from the two Arctic locations (North Slope of Alaska at Barrow and during SHEBA). We quantify the characteristics of clear-sky water vapour inversions in terms of their frequency of occurrence, strength and height covering the entire Arctic for the first time. We found that the frequency of occurrence of water-vapour inversions is highest during winter and lowest during summer. The inversion strength is, however, higher during summer. The observed peaks in the median inversion-layer heights are higher during the winter half of the year, at around 850 hPa over most of the Arctic Ocean, Siberia and the Canadian Archipelago, while being around 925 hPa during most of the summer half of the year over the Arctic Ocean. The radiosounding profiles agree with the frequency, location and strength of water-vapour inversions in the Pacific sector of the Arctic. In addition, the radiosoundings indicate that multiple inversions are the norm with relatively few cases without inversions. The amount of precipitable water within the water-vapour inversion structures is estimated and we find a distinct, two-mode contribution to the total column precipitable water. These results suggest that water-vapour inversions are a significant source to the column thermodynamics, especially during the colder winter and spring seasons. We argue that these inversions are a robust metric to test the reproducibility of thermodynamics within climate models. An accurate statistical representation of water-vapour inversions in models would mean that the large-scale coupling of moisture transport, precipitation, temperature and water-vapour vertical structure and radiation are essentially captured well in such models.

Place, publisher, year, edition, pages
2011. Vol. 11, no 18, 9813-9823 p.
National Category
Meteorology and Atmospheric Sciences
Research subject
Remote sensing
Identifiers
URN: urn:nbn:se:smhi:diva-537DOI: 10.5194/acp-11-9813-2011ISI: 000295368700026OAI: oai:DiVA.org:smhi-537DiVA: diva2:805444
Available from: 2015-04-15 Created: 2015-04-15 Last updated: 2016-11-21Bibliographically approved

Open Access in DiVA

fulltext(1981 kB)7 downloads
File information
File name FULLTEXT01.pdfFile size 1981 kBChecksum SHA-512
3b8ffea4a16de049331a7a13cb689a951dda75996cc91ded8fb07b059e1ffe3a5ce78d7a01ac10306b4524a46edf31de755f48087e4c88ae6b5a6385c08ede16
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Devasthale, AbhaySedlar, Joseph
By organisation
Atmospheric remote sensing
In the same journal
Atmospheric Chemistry And Physics
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 7 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 15 hits
ReferencesLink to record
Permanent link

Direct link