Change search
ReferencesLink to record
Permanent link

Direct link
Fabrication of surface enhanced Raman spectroscopy (SERS) active substrates based on vertically aligned nitrogen doped carbon nanotube forest
Umeå University, Faculty of Science and Technology, Department of Physics. (Nano for energy)
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

This thesis work describes the fabrication and surface enhanced Raman spectroscopy (SERS) characterization of vertically aligned nitrogen (N) doped multi walled carbon nanotube (MWCNT) forests coated by silver (Ag) and gold (Au) nanoparticles. In the present work, the CNT forests were grown from a catalyst metal layer by the chemical vapor deposition (CVD) process at temperature of 800 oC and a physical vapor deposition (PVD) and annealing processes were applied subsequently for the evaporation and diffusion of noble metal nanoparticles on the forest.

Transistor patterning of 20, 50 and 100 μm were made onto the silicon-oxide (SiO2) wafers through the photolithography process with and without depositing a thickness of 10 nm titanium (Ti) buffer layer on the Si-surfaces. Iron (Fe) and cobalt (Co) were used together to deposite a thickness of 5 nm catalyst layer onto the Single Side Polished (SSP) wafers. As carbon and nitrogen precursor for the CNT growth was used pyridine. Two different treatment times (20 and 60 minutes) in the CVD process determined the CNT forest height. Scanning Electron Microscopy (SEM) imaging was employed to characterize the CNT forest properties and Ag and Au nanoparticle distribution along the CNT walls.

The existence of “hot spots” created by the Ag and Au nanoparticles through the surface roughness and plasmonic properties was demonstrated by the SERS measurements. Accordingly, the peak intensity at wave number of 1076 cm-1 was picked up from each SERS spectra to establish the Ag- and Au-trend curves with different concentrations of 4-ATP solution. The SERS mapping was also carried out to study the Ag- and Au-coated CNT surface homogeneity and “hot spots” distribution on the CNT surface. The SERS enhancement factors (EF) were calculated by applying an analyte solution of ethanolic 4-ATP on the CNT surface. The calculated values of EF from Ag- and Au-coated CNT forests were 9×106 and 2.7×105 respectively. 

Place, publisher, year, edition, pages
Keyword [en]
Photolithography, Physical Vapor Deposition, Chemical Vapor Deposition, Annealing, Scanning Electron Microscopy, Surface Enhanced Raman Spectroscopy
National Category
Physical Sciences Chemical Sciences Nano Technology
URN: urn:nbn:se:umu:diva-101573OAI: diva2:800528
Educational program
Master's Programme in Physics
2015-03-23, Bottenhavet, Umeå universitet, Umeå, 10:00 (English)
Available from: 2015-04-09 Created: 2015-04-07 Last updated: 2015-04-09Bibliographically approved

Open Access in DiVA

Attachment(49040 kB)154 downloads
File information
File name FULLTEXT01.pdfFile size 49040 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Department of Physics
Physical SciencesChemical SciencesNano Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 154 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 547 hits
ReferencesLink to record
Permanent link

Direct link