Change search
ReferencesLink to record
Permanent link

Direct link
Light-absorbing carbon in Europe - measurement and modelling, with a focus on residential wood combustion emissions
Show others and affiliations
2013 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 13, no 17, 8719-8738 p.Article in journal (Refereed) Published
Abstract [en]

The atmospheric concentration of elemental carbon (EC) in Europe during the six-year period 2005-2010 has been simulated with the EMEP MSC-W model. The model bias compared to EC measurements was less than 20% for most of the examined sites. The model results suggest that fossil fuel combustion is the dominant source of EC in most of Europe but that there are important contributions also from residential wood burning during the cold seasons and, during certain episodes, also from open biomass burning (wildfires and agricultural fires). The modelled contributions from open biomass fires to ground level concentrations of EC were small at the sites included in the present study, <3% of the long-term average of EC in PM10. The modelling of this EC source is subject to many uncertainties, and it was likely underestimated for some episodes. EC measurements and modelled EC were also compared to optical measurements of black carbon (BC). The relationships between EC and BC (as given by mass absorption cross section, MAC, values) differed widely between the sites, and the correlation between observed EC and BC is sometimes poor, making it difficult to compare results using the two techniques and limiting the comparability of BC measurements to model EC results. A new bottom-up emission inventory for carbonaceous aerosol from residential wood combustion has been applied. For some countries the new inventory has substantially different EC emissions compared to earlier estimates. For northern Europe the most significant changes are much lower emissions in Norway and higher emissions in neighbouring Sweden and Finland. For Norway and Sweden, comparisons to source-apportionment data from winter campaigns indicate that the new inventory may improve model-calculated EC from wood burning. Finally, three different model setups were tested with variable atmospheric lifetimes of EC in order to evaluate the model sensitivity to the assumptions regarding hygroscopicity and atmospheric ageing of EC. The standard ageing scheme leads to a rapid transformation of the emitted hydrophobic EC to hygroscopic particles, and generates similar results when assuming that all EC is aged at the point of emission. Assuming hydrophobic emissions and no ageing leads to higher EC concentrations. For the more remote sites, the observed EC concentration was in between the modelled EC using standard ageing and the scenario treating EC as hydrophobic. This could indicate too-rapid EC ageing in the model in relatively clean parts of the atmosphere.

Place, publisher, year, edition, pages
2013. Vol. 13, no 17, 8719-8738 p.
National Category
Meteorology and Atmospheric Sciences
Research subject
Environment
Identifiers
URN: urn:nbn:se:smhi:diva-401DOI: 10.5194/acp-13-8719-2013ISI: 000324400600012OAI: oai:DiVA.org:smhi-401DiVA: diva2:800017
Available from: 2015-04-01 Created: 2015-03-31 Last updated: 2016-11-21Bibliographically approved

Open Access in DiVA

fulltext(2225 kB)5 downloads
File information
File name FULLTEXT01.pdfFile size 2225 kBChecksum SHA-512
c563b060c84c39bb7ca69b9c85ebf6621d3f04b657daa2ffddb1ff5a50b9d70237397e6afc8678b2473cee342dab253ffb6f0f342dfda8855faa42c6b355dfe5
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Bergström, Robert
By organisation
Air quality
In the same journal
Atmospheric Chemistry And Physics
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 5 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 24 hits
ReferencesLink to record
Permanent link

Direct link