Change search
ReferencesLink to record
Permanent link

Direct link
The thermodynamic state of the Arctic atmosphere observed by AIRS: comparisons during the record minimum sea ice extents of 2007 and 2012
SMHI, Research Department, Atmospheric remote sensing.ORCID iD: 0000-0002-6717-8343
SMHI, Research Department, Atmospheric remote sensing.ORCID iD: 0000-0003-3101-9401
SMHI, Research Department, Climate research - Rossby Centre.ORCID iD: 0000-0003-2051-743X
2013 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 13, no 15, 7441-7450 p.Article in journal (Refereed) Published
Abstract [en]

The record sea ice minimum (SIM) extents observed during the summers of 2007 and 2012 in the Arctic are stark evidence of accelerated sea ice loss during the last decade. Improving our understanding of the Arctic atmosphere and accurate quantification of its characteristics becomes ever more crucial, not least to improve predictions of such extreme events in the future. In this context, the Atmospheric Infrared Sounder (AIRS) instrument onboard NASA's Aqua satellite provides crucial insights due to its ability to provide 3-D information on atmospheric thermodynamics. Here, we facilitate comparisons in the evolution of the thermodynamic state of the Arctic atmosphere during these two SIM events using a decade-long AIRS observational record (2003-2012). It is shown that the meteorological conditions during 2012 were not extreme, but three factors of preconditioning from winter through early summer played an important role in accelerating sea ice melt. First, the marginal sea ice zones along the central Eurasian and North Atlantic sectors remained warm throughout winter and early spring in 2012 preventing thicker ice build-up. Second, the circulation pattern favoured efficient sea ice transport out of the Arctic in the Atlantic sector during late spring and early summer in 2012 compared to 2007. Third, additional warming over the Canadian archipelago and southeast Beaufort Sea from May onward further contributed to accelerated sea ice melt. All these factors may have lead the already thin and declining sea ice cover to pass below the previous sea ice extent minimum of 2007. In sharp contrast to 2007, negative surface temperature anomalies and increased cloudiness were observed over the East Siberian and Chukchi seas in the summer of 2012. The results suggest that satellite-based monitoring of atmospheric preconditioning could be a critical source of information in predicting extreme sea ice melting events in the Arctic.

Place, publisher, year, edition, pages
2013. Vol. 13, no 15, 7441-7450 p.
National Category
Meteorology and Atmospheric Sciences
Research subject
Remote sensing
Identifiers
URN: urn:nbn:se:smhi:diva-403DOI: 10.5194/acp-13-7441-2013ISI: 000323103900012OAI: oai:DiVA.org:smhi-403DiVA: diva2:800010
Available from: 2015-04-01 Created: 2015-03-31 Last updated: 2016-11-21Bibliographically approved

Open Access in DiVA

fulltext(1270 kB)5 downloads
File information
File name FULLTEXT01.pdfFile size 1270 kBChecksum SHA-512
8c803f59197ed0b3ab4d44ca4c8198feaa2a275531d65e70564e8cd4788dd02f1ffb8d56cadd0c4715aaefac7ea9b473fd351be1e168aad79c4091cc2a579769
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Devasthale, AbhaySedlar, JosephKoenigk, Torben
By organisation
Atmospheric remote sensingClimate research - Rossby Centre
In the same journal
Atmospheric Chemistry And Physics
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 5 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 30 hits
ReferencesLink to record
Permanent link

Direct link