References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Mathematical Tools Applied in Computational Electromagnetics for a Biomedical Application and Antenna AnalysisPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2015 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Abstract [sv]

##### Place, publisher, year, edition, pages

Västerås: Mälardalen University , 2015.
##### Series

Mälardalen University Press Dissertations, ISSN 1651-4238 ; 176
##### National Category

Mathematics Computational Mathematics Other Electrical Engineering, Electronic Engineering, Information Engineering
##### Research subject

Mathematics/Applied Mathematics
##### Identifiers

URN: urn:nbn:se:mdh:diva-27764ISBN: 978-91-7485-200-4OAI: oai:DiVA.org:mdh-27764DiVA: diva2:799011
##### Public defence

2015-05-12, Delta, Mälardalens högskola, Västerås, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt384",{id:"formSmash:j_idt384",widgetVar:"widget_formSmash_j_idt384",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt390",{id:"formSmash:j_idt390",widgetVar:"widget_formSmash_j_idt390",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt396",{id:"formSmash:j_idt396",widgetVar:"widget_formSmash_j_idt396",multiple:true});
##### Projects

RALF3
##### Funder

Swedish Foundation for Strategic Research
Available from: 2015-04-02 Created: 2015-03-27 Last updated: 2015-06-29Bibliographically approved
##### List of papers

To ensure a high level of safety and reliability of electronic/electric systems EMC (electromagnetic compatibility) tests together with computational techniques are used. In this thesis, mathematical modeling and computational electromagnetics are applied to mainly two case studies. In the first case study, electromagnetic modeling of electric networks and antenna structures above, and buried in, the ground are studied. The ground has been modelled either as a perfectly conducting or as a dielectric surface. The second case study is focused on mathematical modeling and algorithms to solve the direct and inverse electromagnetic scattering problem for providing a model-based illustration technique. This electromagnetic scattering formulation is applied to describe a microwave imaging system called Breast Phantom. The final goal is to simulate and detect cancerous tissues in the human female breast by this microwave technique.

The common issue in both case studies has been the long computational time required for solving large systems of equations numerically. This problem has been dealt with using approximation methods, numerical analysis, and also parallel processing of numerical data. For the first case study in this thesis, Maxwell’s equations are solved for antenna structures and electronic networks by approximation methods and parallelized algorithms implemented in a LAN (Local Area Network). In addition, PMM (Point-Matching Method) has been used for the cases where the ground is assumed to act like a dielectric surface. For the second case study, FDTD (Finite-Difference Time Domain) method is applied for solving the electromagnetic scattering problem in two dimensions. The parallelized numerical FDTD-algorithm is implemented in both Central Processing Units (CPUs) and Graphics Processing Units (GPUs).

För att säkerställa människors säkerhet och tillförlitligheten hos elektriska/elektroniska system används EMC (elektromagnetisk kompatibilitet)-tester i kombination med matematisk modellering. För att undersöka biologiska vävnaders egenskaper används så kallade elektromagnetiska spridningsmetoder vid sidan om elektromagnetisk modellering. I denna avhandling har matematisk modellering och beräkningsmetoder använts för huvudsakligen två fallstudier. Den första fallstudien handlar om att analysera antennstrukturer och elektriska nät ovanför, och nergrävda i marken. Marken har modellerats antingen som en elektriskt ledande yta eller en dielektrisk yta. Den andra fallstudien fokuserar på matematisk modellering och algoritmer för att lösa ett elektromagnetiskt spridningsproblem för att beskriva en modellbaserad illustrationsteknik. Spridningsformuleringen tillämpas för att modellera ett avbildningssystem som använder mikrovågor, kallat Bröstfantomen. Det slutliga målet är att upptäcka cancervävnader i kvinnobröst genom denna mikrovågsteknik.

Flaskhalsen i de båda fallstudierna har visat sig vara de långa beräkningstider som krävs för att lösa stora numeriska system. För att lösa problemet har approximationsmetoder, numerisk analys och även parallella beräkningar genomförts i detta arbete. För den första fallstudien har Maxwells ekvationer lösts genom CEM (Complex Image Methods) och med parallellisering i ett LAN (Local Area Network). I de fall där marken betraktas som en dielektrisk yta, har PMM (Point-Matching Method) tillämpats. I samband med den andra fallstudien har FDTD (Finite-Difference Time Domain) metoder tillämpats för att lösa ett elektromagnetiskt spridningsproblem i två dimensioner. En parallelliserad FDTD-algoritm har implementerats i både CPU:s (Central Processing Units) och GPU:s (Graphics Processing Units).

1. Antenna analysis using PEEC and the complex image method$(function(){PrimeFaces.cw("OverlayPanel","overlay806132",{id:"formSmash:j_idt432:0:j_idt436",widgetVar:"overlay806132",target:"formSmash:j_idt432:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Optimization of PEEC based electromagneticmodeling code using grid computing$(function(){PrimeFaces.cw("OverlayPanel","overlay806134",{id:"formSmash:j_idt432:1:j_idt436",widgetVar:"overlay806134",target:"formSmash:j_idt432:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Sommerfeld’s integrals and Hallen’s integral equation in Data Analysis for Horizontal Dipole Antenna above Real Ground$(function(){PrimeFaces.cw("OverlayPanel","overlay752658",{id:"formSmash:j_idt432:2:j_idt436",widgetVar:"overlay752658",target:"formSmash:j_idt432:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. HF Analysis of Thin Horizontal Central-Fed Conductor above Lossy Homogeneous Soil$(function(){PrimeFaces.cw("OverlayPanel","overlay752645",{id:"formSmash:j_idt432:3:j_idt436",widgetVar:"overlay752645",target:"formSmash:j_idt432:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Analysis of shielded coupled microstrip line with partial dielectric support$(function(){PrimeFaces.cw("OverlayPanel","overlay752664",{id:"formSmash:j_idt432:4:j_idt436",widgetVar:"overlay752664",target:"formSmash:j_idt432:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. Solution of Two-Dimensional Electromagnetic Scattering Problem by FDTD with Optimal Step Size, Based on a Semi-Norm Analysis$(function(){PrimeFaces.cw("OverlayPanel","overlay752689",{id:"formSmash:j_idt432:5:j_idt436",widgetVar:"overlay752689",target:"formSmash:j_idt432:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

7. GPU Implementation of a Biological Electromagnetic Scattering Problem by FDTD$(function(){PrimeFaces.cw("OverlayPanel","overlay806136",{id:"formSmash:j_idt432:6:j_idt436",widgetVar:"overlay806136",target:"formSmash:j_idt432:6:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1123",{id:"formSmash:lower:j_idt1123",widgetVar:"widget_formSmash_lower_j_idt1123",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1124_j_idt1126",{id:"formSmash:lower:j_idt1124:j_idt1126",widgetVar:"widget_formSmash_lower_j_idt1124_j_idt1126",target:"formSmash:lower:j_idt1124:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});