Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using a Social Semiotic Perspective to Inform the Teaching and Learning of Physics
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics. (Physics Education Research)
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis examines meaning-making in three different areas of undergraduate physics: the refraction of light; electric circuits; and, electric potential and electric potential energy. In order to do this, a social semiotic perspective was constituted for the thesis to facilitate the analysis of meaning-making in terms of the semiotic resources that are typically used in the teaching and learning of physics. These semiotic resources include, for example, spoken and written language, diagrams, graphs, mathematical equations, gestures, simulations, laboratory equipment and working practices.

The empirical context of the thesis is introductory undergraduate physics where interactive engagement was part of the educational setting. This setting presents a rich data source, which is made up of video- and audio recordings and field notes for examining how semiotic resources affect physics teaching and learning.

Theory building is an integral part of the analysis in the thesis, which led to the constitution of a new analytical tool – patterns of disciplinary-relevant aspects. Part of this process then resulted in the development of a new construct, disciplinary affordance, which for a discipline such as physics, refers to the inherent potential of a semiotic resource to provide access to disciplinary knowledge. These two aspects, in turn, led to an exploration of new empirical and theoretical links to the Variation Theory of Learning.

The implications of this work for the teaching and learning of physics means that new focus is brought to the physics content (object of learning), the semiotic resources that are used to deal with that content, and how the semiotic resources are used to create patterns of variation within and across the disciplinary-relevant aspects. As such, the thesis provides physics teachers with new and powerful ways to analyze the semiotic resources that get used in efforts to optimize the teaching and learning of physics. 

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. , 178 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1241
Keyword [en]
Social semiotics, semiotic resources, physics education research, interactive engagement, disciplinary affordance, disciplinary-relevant aspects, patterns of disciplinary-relevant aspects, the Variation Theory of Learning
National Category
Other Physics Topics
Research subject
Physics with specialization in Physics Education
Identifiers
URN: urn:nbn:se:uu:diva-247771ISBN: 978-91-554-9210-6 (print)OAI: oai:DiVA.org:uu-247771DiVA: diva2:797498
Public defence
2015-05-13, 10132, Lägerhyddsvägen 1, Uppsala, 09:00 (English)
Opponent
Supervisors
Available from: 2015-04-22 Created: 2015-03-23 Last updated: 2015-07-07
List of papers
1. Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction
Open this publication in new window or tab >>Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction
2012 (English)In: European journal of physics, ISSN 0143-0807, E-ISSN 1361-6404, Vol. 33, no 3, 657-666 p.Article in journal (Refereed) Published
Abstract [en]

Research has shown that interactive engagement enhances student learning outcomes. A growing body of research suggests that the representations we use in physics are important in such learning environments. In this paper we draw on a number of sources in the literature to explore the role of representations in interactive engagement in physics. In particular we are interested in the potential for sharing disciplinary knowledge inherent in so-called persistent representations (such as equations, diagrams and graphs), which we use in physics. We use selected extracts from a case study, where a group of senior undergraduate physics students are asked to explain the phenomenon of refraction, to illustrate implications for interactive engagement. In this study the ray diagram that was initially introduced by the students did not appear to sufficiently support their interactive engagement. However, the introduction of a wavefront diagram quickly led their discussion to an agreed conclusion. From our analysis we conclude that in interactive engagement it is important to choose appropriate persistent representations to coordinate the use of other representations such as speech and gestures. Pedagogical implications and future research are proposed.

National Category
Physical Sciences
Research subject
Physics with specialization in Physics Education
Identifiers
urn:nbn:se:uu:diva-174356 (URN)10.1088/0143-0807/33/3/657 (DOI)000303039600022 ()
Funder
Swedish Research Council
Available from: 2012-05-24 Created: 2012-05-15 Last updated: 2017-12-07Bibliographically approved
2. Att välja lämpliga semiotiska resurser.
Open this publication in new window or tab >>Att välja lämpliga semiotiska resurser.
2013 (Swedish)In: Scientific literacy: teori och praktik / [ed] E. Lundqvist, R. Säljö & L. Östman, Malmö, Sweden: Gleerups Utbildning AB, 2013, 59-70 p.Chapter in book (Refereed)
Place, publisher, year, edition, pages
Malmö, Sweden: Gleerups Utbildning AB, 2013
National Category
Other Physics Topics
Research subject
Physics with specialization in Physics Education
Identifiers
urn:nbn:se:uu:diva-211970 (URN)
Funder
Swedish Research Council
Available from: 2013-12-03 Created: 2013-12-03 Last updated: 2017-01-25
3. Unpacking physics representations: towards an appreciation of disciplinary affordance
Open this publication in new window or tab >>Unpacking physics representations: towards an appreciation of disciplinary affordance
2014 (English)In: Physical Review Special Topics : Physics Education Research, ISSN 1554-9178, E-ISSN 1554-9178, Vol. 10, no 2, 020129Article in journal (Refereed) Published
Abstract [en]

This theoretical article problematizes the access to disciplinary knowledge that different physics representations have the possibility to provide; that is, their disciplinary affordances. It is argued that historically, such access has become increasingly constrained for students as physics representations have been rationalized over time. Thus, the case is made that such rationalized representations, while powerful for communication from a disciplinary point of view, manifest as learning challenges for students. The proposal is illustrated using a vignette from a student discussion in the physics laboratory about circuit connections for an experimental investigation of the charging and discharging of a capacitor. It is concluded that in order for students to come to appreciate the disciplinary affordances of representations, more attention needs to be paid to their “unpacking”. Building on this conclusion, two questions are proposed that teachers can ask themselves in order to begin to unpack the representations that they use in their teaching. The paper ends by proposing directions for future research in this area.

Keyword
Physics representations, disciplinary affordance, representational fluency, unpacking
National Category
Other Physics Topics
Research subject
Physics with specialization in Physics Education
Identifiers
urn:nbn:se:uu:diva-237609 (URN)10.1103/PhysRevSTPER.10.020129 (DOI)000348875000001 ()
Funder
Swedish Research Council
Available from: 2014-12-03 Created: 2014-12-03 Last updated: 2017-12-05Bibliographically approved
4. A social semiotic approach to identifying critical aspects
Open this publication in new window or tab >>A social semiotic approach to identifying critical aspects
2015 (English)In: International Journal for Lesson and Learning Studies, ISSN 2046-8253, E-ISSN 2046-8261, Vol. 4, no 3, 302-316 p.Article in journal (Refereed) Published
Abstract [en]

Purpose

This article proposes a social semiotic approach to analysing objects of learning in terms of their critical aspects.

Design/methodology/approach

The design for this article focuses on how the semiotic resources – including language, equations, and diagrams – that are commonly used in physics teaching realise the critical aspects of a common physics object of learning. A social semiotic approach to the analysis of a canonical text extract from optics is presented to illustrate how critical aspects can be identified. 

Findings

Implications for university teaching and learning of physics stemming from this social semiotic approach are suggested.

Originality/value

Hitherto under-explored similarities between the Variation Theory of Learning, which underpins learning studies, and a social semiotic approach to meaning-making are identified. These similarities are used to propose a new, potentially very powerful approach to identifying critical aspects of objects of learning.

References:

Airey, J. and Linder, C. (2009), “A disciplinary discourse perspective on university science learning: achieving fluency in a critical constellation of modes”, Journal of Research in Science Teaching, Vol. 46 No. 1, pp. 27-49.

Bernhard, J. (2010), “Insightful learning in the laboratory: some experiences from 10 years of designing and using conceptual labs”, European Journal of Engineering Education, Vol. 35 No. 3, pp. 271-287.

Booth, S. (1997), “On phenomenography, learning and teaching”, Higher Education Research & Development, Vol. 16 No. 2, pp. 135-158. 

Booth, S. and Hultén, M. (2003), “Opening dimensions of variation: an empirical study of learning in a web-based discussion”, Instructional Science, Vol. 31 Nos 1/2, 65-86.

Chandler, D. (2007), Semiotics: The Basics, Routledge, New York, NY. Clerk-Maxwell, J.C. (1871), “Remarks on the mathematical classification of physical quantities”, Proceedings London Math. Soc., London, pp. 224-233.

Cope, C. (2000), “Educationally critical aspects of the experience of learning about the concept of an information system”, PhD thesis, La Trobe University, Bundoora.

Einstein, A. (1936), “Physics and reality”, Journal of the Franklin Institute, Vol. 221 No. 3, pp. 349-382.

Feynman, R.P., Leighton, R.P. and Sands, M. (1963), The Feynman Lectures on Physics, Vol. I, Perseus Books, Reading, available at: www.feynmanlectures.caltech.edu, (accessed 9 March 2015).

Fredlund, T., Airey, J. and Linder, C. (2012), “Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction”, Eur. J. Phys., Vol. 33 No. 3, pp. 657-666.

Fredlund, T., Airey, J. and Linder, C. (2015), “Enhancing the possibilities for learning: variation of disciplinary-relevant aspects in physics representations”, Eur. J. Phys, Vol. 36, 055001.

Fredlund, T., Linder, C., Airey, J. and Linder, A. (2014), “Unpacking physics representations: towards an appreciation of disciplinary affordance”, Phys. Rev. ST Phys. Educ. Res., Vol. 10, 020129.

Gurwitsch, A. (1964), The Field of Consciousness, Vol. 2, Duquesne University Press, Pittsburgh, PA. Halliday, M.A.K. (1978), Language as Social Semiotic, Edward Arnold, London.

Halliday, M.A.K. (1993), “On the language of physical science”, in Halliday, M.A.K. and Martin, J.R. (Eds), Writing Science: Literacy and Discursive Power, The Falmer Press, London, pp. 59-75.

Halliday, M.A.K. (1998), “Things and relations: regrammaticising experience as technical knowledge”, in Martin, J.R. and Veel, R. (Eds), Reading Science: Critical and Functional Perspectives on Discourses of Science, Routledge, London, pp. 185-236.

Halliday, M.A.K. (2004a), “The grammatical construction of scientific knowledge: the framing of the English clause”, in Webster, J.J. (Ed.), Collected Works of M.A.K. Halliday: The Language of Science, Vol. 5, Continuum, London, pp. 102-134.

Halliday, M.A.K. (2004b), “Language and the reshaping of human experience”, in Webster, J.J. (Ed.), Collected Works of M.A.K. Halliday: The Language of Science, Vol. 5, Continuum, London, pp. 7-23.

Halliday, M.A.K. and Matthiessen, C.M.I.M. (1999), Construing Experience Through Meaning, Cassell, New York, NY.

Halliday, M.A.K. and Matthiessen, C.M.I.M. (2004), An Introduction to Functional Grammar, Hodder Education, London.

Hodge, R. and Kress, G. (1988), Social Semiotics, Cornell University Press, New York, NY.

Ingerman, Å., Linder, C. and Marshall, D. (2009), “The learners’ experience of variation: following students’ threads of learning physics in computer simulation sessions”, Instructional Science, Vol. 37 No. 3, pp. 273-292.

Kress, G. (1997), Before Writing: Rethinking the Paths to Literacy, Routledge, London.

Kress, G. (2010), Multimodality: A Social Semiotic Approach to Contemporary Communication, Routledge, London.

Kress, G. and Van Leeuwen, T. (2006), Reading Images: The Grammar of Visual Design, Routledge, New York, NY. 

Kryjevskaia, M., Stetzer, M.R. and Heron, P.R.L. (2012), “Student understanding of wave behavior at a boundary: the relationships among wavelength, propagation speed, and frequency”, Am. J. Phys., Vol. 80 No. 4, pp. 339-347.

Lemke, J.L. (1983), “Thematic analysis, systems, structures, and strategies”, Semiotic Inquiry, Vol. 3 No. 2, pp. 159-187.

Lemke, J.L. (1990), Talking Science, Ablex Publishing, Norwood, NJ. Lemke, J.L. (1998), “Multiplying meaning: visual and verbal semiotics in scientific text”, in Martin, J.R. and Veel, R. (Eds), Reading Science: Critical and Functional Perspectives on Discourses of Science, Routledge, London, pp. 87-114.

Lemke, J.L. (2003), “Mathematics in the middle: measure, picture, gesture, sign and word”, in Anderson M., Saenz-Ludlow A., Zellweger S. and Cifarelli V. (Eds), Educational Perspectives on Mathematics as Semiosis: From Thinking to Interpreting to Knowing, Legas, Ottawa, pp. 215-234.

Linder, C., Fraser, D. and Pang, M.F. (2006), “Using a variation approach to enhance physics learning in a college classroom”, The Physics Teacher, Vol. 44 No. 9, pp. 589-592.

Lo, M.L. (2012), Variation Theory and the Improvement of Teaching and Learning, Göteborgs Universitet, Gothenburg.

Lo, M.L. and Marton, F. (2011), “Towards a science of the art of teaching: using variation theory as a guiding principle of pedagogical design”, International Journal for Lesson and Learning Studies, Vol. 1 No. 1, pp. 7-22.

Mahoney, M.S. (1994), The Mathematical Career of Pierre de Fermat, 1601-1665, Princeton University Press, Princeton, MA.

Marton, F. (2006), “Sameness and difference in transfer”, The Journal of the Learning Sciences, Vol. 15 No. 4, pp. 499-535.

Marton, F. (2015), Necessary Conditions of Learning, Routledge, New York, NY.

Marton, F. and Booth, S. (1997), Learning and Awareness, Lawrence Erlbaum Associates, Mahwah, NJ.

Marton, F. and Pang, M.F. (2013), “Meanings are acquired from experiencing differences against a background of sameness, rather than from experiencing sameness against a background of difference: putting a conjecture to the test by embedding it in a pedagogical tool”, Frontline Learning Research, Vol. 1 No. 1, pp. 24-41.

Marton, F. and Tsui, A.B.M. (2004), Classroom Discourse and the Space of Learning, Lawrence Erlbaum Associates, London.

Marton, F., Runesson, U. and Tsui, A.B.M. (2004), “The space of learning”, in Marton, F. and Tsui, A.B.M. (Eds), Classroom Discourse and the Space of Learning, Lawrence Erlbaum Associates, London, pp. 3-40.

New London Group (1996), “A pedagogy of multiliteracies: designing social futures”, Harvard Educational Review, Vol. 66 No. 1, pp. 60-93. Norris, S.P. and Phillips, L.M. (2003), “How literacy in its fundamental sense is central to scientific literacy”, Science Education, Vol. 87 No. 2, pp. 224-240.

O’Halloran, K.L. (2005), Mathematical Discourse: Language, Symbolism and Visual Images, Continuum, London.

Pang, M.F. and Marton, F. (2013), “Interaction between the learners’ initial grasp of the object of learning and the learning resource orded”, Instructional Science, Vol. 41 No. 6, pp. 1065-1082.

Van Leeuwen, T. (2005), Introducing Social Semiotics, Routledge, New York, NY.

Warrell, D. A. (1994), “Sea snake bites in the Asia-Pacific region”, in Gopalakrishnakone, P. (Ed.), Sea Snake Toxinology, Singapore University Press, Singapore, pp. 1-36. 

Wignell, P., Martin, J.R. and Eggins, S. (1993), “The discourse of geography: ordering and explaining the experiential world”, in Halliday, M.A.K. and Martin, J.R. (Eds), Writing Science: Literacy and Discursive Power, The Falmer Press, London, pp. 151-183.

Wood, K. (2013), “A design for teacher education based on a systematic framework of variation to link teaching with learners’ ways of experiencing the object of learning”, International Journal for Lesson and Learning Studies, Vol. 2 No. 1, pp. 56-71.

Young, H.D. and Freedman, R.A. (2004), University Physics with Modern Physics, Pearson, San Francisco, CA.

Keyword
Learning study, Variation Theory of Learning, social semiotics, objects of learning, disciplinary-relevant aspects, critical aspects, teaching practice, physics education
National Category
Other Physics Topics
Research subject
Physics with specialization in Physics Education
Identifiers
urn:nbn:se:uu:diva-247768 (URN)10.1108/IJLLS-01-2015-0005 (DOI)
Available from: 2015-03-23 Created: 2015-03-23 Last updated: 2017-12-04
5. Enhancing the possibilities for learning: Variation of disciplinary-relevant aspects in physics representations
Open this publication in new window or tab >>Enhancing the possibilities for learning: Variation of disciplinary-relevant aspects in physics representations
2015 (English)In: European journal of physics, ISSN 0143-0807, E-ISSN 1361-6404, Vol. 36, no 5, 055001Article in journal (Refereed) Published
Abstract [en]

In this theoretical article we propose three factors that can enhance the possibilities for learning physics from representations, namely: (1) the identification of disciplinary-relevant aspects for a particular disciplinary task, such as solving a physics problem or explaining a phenomenon, (2) the selection of appropriate representations that showcase these disciplinary-relevant aspects, and (3) the creation of variation within the selected representations to help students notice these disciplinary-relevant aspects and the ways in which they are related to each other. An illustration of how these three factors can guide teachers in their efforts to promote physics learning is presented.

Keyword
Disciplinary-relevant aspects, representations, Variation Theory of Learning, physics education
National Category
Other Physics Topics
Research subject
Physics with specialization in Physics Education
Identifiers
urn:nbn:se:uu:diva-247770 (URN)10.1088/0143-0807/36/5/055001 (DOI)000359609100001 ()
Funder
Swedish Research Council
Available from: 2015-03-23 Created: 2015-03-23 Last updated: 2017-12-04Bibliographically approved
6. Towards addressing transient learning challenges in undergraduate physics: An example from electrostatics
Open this publication in new window or tab >>Towards addressing transient learning challenges in undergraduate physics: An example from electrostatics
2015 (English)In: European journal of physics, ISSN 0143-0807, E-ISSN 1361-6404, Vol. 36, no 5, 055002Article in journal (Refereed) Published
Abstract [en]

In this article we characterize transient learning challenges as learning challenges that arise out of teaching situations rather than conflicts with prior knowledge. We propose that these learning challenges can be identified by paying careful attention to the representations that students produce. Once a transient learning challenge has been identified, teachers can create interventions to address it. By illustration, we argue that an appropriate way to design such interventions is to create variation around the disciplinary-relevant aspects associated with the transient learning challenge.

Keyword
Transient learning challenges, representations, electric potential, electric potential energy, the Variation Theory of Learning
National Category
Other Physics Topics
Research subject
Physics with specialization in Physics Education
Identifiers
urn:nbn:se:uu:diva-247769 (URN)10.1088/0143-0807/36/5/055002 (DOI)000359609100002 ()
Funder
Swedish Research Council
Available from: 2015-03-23 Created: 2015-03-23 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

fulltext(3634 kB)423 downloads
File information
File name FULLTEXT01.pdfFile size 3634 kBChecksum SHA-512
877e319b717bed2faf7fdc446b9641f21984df81ae6d5aab8bbd79a5122e8cbd2687a10a62ba79516a78d514b0fdf1407d83b9f3ecee8691c38e4cf05c4b2314
Type fulltextMimetype application/pdf