Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Automatic vertebrae detection and labeling in sagittal magnetic resonance images
Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Radiologists are often plagued by limited time for completing their work, with an ever increasing workload. A picture archiving and communication system (PACS) is a platform for daily image reviewing that improves their work environment, and on that platform for example spinal MR images can be reviewed. When reviewing spinal images a radiologist wants vertebrae labels, and in Sectra's PACS platform there is a good opportunity for implementing an automatic method for spinal labeling. In this thesis a method for performing automatic spinal labeling, called a vertebrae classifier, is presented. This method should remove the need for radiologists to perform manual spine labeling, and could be implemented in Sectra's PACS software to improve radiologists overall work experience.Spine labeling is the process of marking vertebrae centres with a name on a spinal image. The method proposed in this thesis for performing that process was developed using a machine learning approach for vertebrae detection in sagittal MR images. The developed classifier works for both the lumbar and the cervical spine, but it is optimized for the lumbar spine. During the development three different methods for the purpose of vertebrae detection were evaluated. Detection is done on multiple sagittal slices. The output from the detection is then labeled using a pictorial structure based algorithm which uses a trained model of the spine to correctly assess correct labeling.

The suggested method achieves 99.6% recall and 99.9% precision for the lumbar spine. The cervical spine achieves slightly worse performance, with 98.1% for both recall and precision. This result was achieved by training the proposed method on 43 images and validated with 89 images for the lumbar spine. The cervical spine was validated using 26 images. These results are promising, especially for the lumbar spine. However, further evaluation is needed to test the method in a clinical setting.

Abstract [sv]

Radiologer får bara mindre och mindre tid för att utföra sina arbetsuppgifter, då arbetsbördan bara blir större. Ett picture archiving and communication system (PACS) är en platform där radiologer kan undersöka medicinska bilder, däribland magnetic resonance (MR) bilder av ryggraden. När radiologerna tittar på dessa bilder av ryggraden vill de att kotorna ska vara markerade med sina namn, och i Sectra's PACS platform finns det en bra möjlighet för att implementera en automatisk metod för att namnge ryggradens kotor på bilden. I detta examensarbete presenteras en metod för att automatiskt markera alla kotorna utifrån saggitala MR bilder. Denna metod kan göra så att radiologer inte längre behöver manuellt markera kotor, och den skulle kunna implementeras i Sectra's PACS för att förbättra radiologernas arbetsmiljö.

Det som menas med att markera kotor är att man ger mitten av alla kotor ett namn utifrån en MR bild på ryggraden. Metoden som presenteras i detta arbete kan utföra detta med hjälp av ett "machine learning" arbetssätt. Metoden fungerar både för övre och nedre delen av ryggraden, men den är optimerad för den nedre delen. Under utvecklingsfasen var tre olika metoder för att detektera kotor evaluerade. Resultatet från detektionen är sedan använt för att namnge alla kotor med hjälp av en algoritm baserad på pictorial structures, som använder en tränad model för att kunna evaluera vad som bör anses vara korrekt namngivning.

Metoden uppnår 99.6% recall och 99.9% precision för nedre ryggraden. För övre ryggraden uppnås något sämre resultat, med 98.1% vad gäller både recall och precision. Detta resultat uppnådes då metoden tränades på 43 bilder och validerades på 89 bilder för nedre ryggraden. För övre ryggraden användes 26 stycken bilder. Resultaten är lovande, speciellt för den nedre delen. Dock måste ytterligare utvärdering göras för metoden i en klinisk miljö.

Place, publisher, year, edition, pages
2015. , 69 p.
Keyword [en]
Machine learning, Image processing, Object detection, Magnetic Resonance Imaging, Histogram of Gradients, Deformable Part Models
National Category
Computer Engineering
Identifiers
URN: urn:nbn:se:liu:diva-115874ISRN: LiTH-IMT/MI30-A-EX--15/525--SEOAI: oai:DiVA.org:liu-115874DiVA: diva2:797047
External cooperation
Sectra Imaging IT Solutions AB
Subject / course
Medical Informatics
Supervisors
Examiners
Available from: 2015-03-23 Created: 2015-03-20 Last updated: 2015-03-23Bibliographically approved

Open Access in DiVA

fulltext(5788 kB)328 downloads
File information
File name FULLTEXT01.pdfFile size 5788 kBChecksum SHA-512
80138372a964ffe0e3341f322535a57fdb5ceda6cceccce68d1705fa3114039e354287e056ed1b74f235b4392f5bb0284d8ecc67e6996d62c856422b0ce793e2
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Andersson, Daniel
By organisation
Medical InformaticsThe Institute of Technology
Computer Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 328 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 687 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf