Change search
ReferencesLink to record
Permanent link

Direct link
Siderophore production by microorganisms isolated from a podzol soil profile
Stockholm University, Faculty of Science, Department of Geological Sciences.
2015 (English)In: Geomicrobiology Journal, ISSN 0149-0451, E-ISSN 1521-0529, Vol. 32, no 5, 397-411 p.Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2015. Vol. 32, no 5, 397-411 p.
National Category
Earth and Related Environmental Sciences
Research subject
Geochemistry
Identifiers
URN: urn:nbn:se:su:diva-114824DOI: 10.1080/01490451.2014.925011OAI: oai:DiVA.org:su-114824DiVA: diva2:794505
Available from: 2015-03-11 Created: 2015-03-11 Last updated: 2016-10-27Bibliographically approved
In thesis
1. Microbe-mineral interactions in soil: Investigation of biogenic chelators, microenvironments and weathering processes
Open this publication in new window or tab >>Microbe-mineral interactions in soil: Investigation of biogenic chelators, microenvironments and weathering processes
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The interplay between geology and biology has shaped the Earth during billions of years. Microbe-mineral interactions are prime examples of this interplay and underscore the importance of microorganisms in making Earth a suitable environment for all forms of life. The present thesis takes an interdisciplinary approach to obtain an integrated understanding of microbe-mineral interactions. More specifically it addresses how the composition and distribution of biogenic weathering agents (siderophores) differ with regard to soil horizon and mineral type in situ, what siderophore type soil microorganisms produces under laboratory conditions, what role microbial surface attachment plays in mineral weathering reactions and what central roles and applications siderophores have in the environment.

Podzol, the third most abundant soil in Europe, and most abundant in Scandinavia, was chosen for a field experiment, where three minerals (apatite, biotite and oligoclase) were inserted in the organic, eluvial and upper illuvial soil horizons. The study started with an investigation of the siderophore composition in the bulk soil profile and on the mineral surfaces (paper I), which was followed by a study of the siderophore producing capabilities of microorganisms isolated from the soil profile under laboratory conditions (paper II). Subsequently, a study was done on the impact of microbial surface attachment on biotite dissolution (paper III). Finally, the roles of siderophores in nature and their potential applications were reviewed (paper IV).

The major findings were that the concentration of hydroxamate siderophores in the soil attached to the mineral surfaces was greater than those in the surrounding bulk soil, indicating that the minerals stimulate the microbial communities attached to their surfaces to produce more siderophores than the microorganisms in the bulk soil. Each mineral had a unique assemblage of hydroxamate siderophores, that makes the mineral type one of the main factors affecting siderophore composition in the natural environment. Siderophore production varied between the microbial species originating from different soil horizons, suggesting that the metabolic properties of microbes in deep soil horizons function differently from those at upper soil horizons. Microbial surface attachment enhanced the biotite dissolution, showing that attached microbes has a greater influence on weathering reactions in soil than planktonic populations. In conclusion, our findings reflected that the complicated relationship between microorganisms and mineral surfaces reinforces the central theme of biogeochemistry that the mineral controls the biological activity in the natural environments. However, the importance of these relationships to the biogeochemical systems requires further investigation.

Place, publisher, year, edition, pages
Stockholm: Department of Geological Sciences, Stockholm University, 2015
Keyword
Podzol, Biotite, Apatite, Oligoclase, Microbial attachment, Siderophores, Soil microorganisms
National Category
Earth and Related Environmental Sciences
Research subject
Geochemistry
Identifiers
urn:nbn:se:su:diva-115250 (URN)978-91-7649-135-5 (ISBN)
Public defence
2015-05-11, Nordenskiöldsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In press. Paper 3: In press.

 

Available from: 2015-04-20 Created: 2015-03-18 Last updated: 2016-02-03Bibliographically approved

Open Access in DiVA

fulltext(1688 kB)7 downloads
File information
File name FULLTEXT01.pdfFile size 1688 kBChecksum SHA-512
a18a9b47910ccbe1cb3cf55ae1facff0803841d38d8a21b3e5c3e538b788dd3e872754eeca68612b78670901fa032dbdb646ae997bf8e7c5115fd5a86aae24a0
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Ahmed, EngyHolmström, Sara J. M.
By organisation
Department of Geological Sciences
In the same journal
Geomicrobiology Journal
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 7 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 76 hits
ReferencesLink to record
Permanent link

Direct link